ECB-ART-46828
Drug Chem Toxicol
2020 May 01;433:287-297. doi: 10.1080/01480545.2018.1524475.
Show Gene links
Show Anatomy links
Mercury disrupts redox status, up-regulates metallothionein and induces genotoxicity in respiratory tree of sea cucumber (Holothuria forskali).
Abstract
Mercury (Hg) is among the most deleterious contaminant in the aquatic environment and presents a serious risk to humans and ecosystems. This study evaluated the effects of Hg on oxidative stress biomarkers, DNA integrity and histological structure of the respiratory tree of Holothuria forskali exposed to different concentrations of mercury chloride HgCl2 (0.04, 0.08 and 0.16 mg L-1) for 96 h. Exposure of H. forskali to Hg led to oxidative stress with an increase in Malondialdehyde (MDA), hydrogen peroxide (H2O2), advanced oxidation protein product (AOPP) and protein carbonyls (PCO) levels in the treated groups. Alteration of the antioxidant system was also confirmed by the significant increase in glutathione (GSH), nonprotein thiol (NPSH) and vitamin C contents. Moreover, the enzymatic activity of superoxide dismutase (SOD), Glutathione peroxidase (GPX) and Catalase (CAT) increased significantly. Our research revealed that total Metallothionein (MTs) content enhanced in a dose-dependent manner. Interestingly, the exposure to this metal provoked a decrease in Acetylcholinesterase (AChE) activity. Hg genotoxicity was further evidenced by a random DNA degradation that was observed in the treated groups. The histopathological findings confirmed the biochemical results. Overall, our results indicated that mercury-induced genotoxicity, oxidative damage and histopathological injuries in the respiratory tree of H. forskali.
PubMed ID: 30554537
Article link: Drug Chem Toxicol
Genes referenced: LOC100887844 LOC100888042 LOC579267 LOC762935 sod1