Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Dev Biol 2016 Oct 01;4181:146-156. doi: 10.1016/j.ydbio.2016.07.007.
Show Gene links Show Anatomy links

Differential Nanos 2 protein stability results in selective germ cell accumulation in the sea urchin.

Oulhen N , Wessel GM .

Nanos is a translational regulator required for the survival and maintenance of primordial germ cells. In the sea urchin, Strongylocentrotus purpuratus (Sp), Nanos 2 mRNA is broadly transcribed but accumulates specifically in the small micromere (sMic) lineage, in part because of the 3''UTR element GNARLE leads to turnover in somatic cells but retention in the sMics. Here we found that the Nanos 2 protein is also selectively stabilized; it is initially translated throughout the embryo but turned over in the future somatic cells and retained only in the sMics, the future germ line in this animal. This differential stability of Nanos protein is dependent on the open reading frame (ORF), and is independent of the sumoylation and ubiquitylation pathways. Manipulation of the ORF indicates that 68 amino acids in the N terminus of the Nanos protein are essential for its stability in the sMics whereas a 45 amino acid element adjacent to the zinc fingers targets its degradation. Further, this regulation of Nanos protein is cell autonomous, following formation of the germ line. These results are paradigmatic for the unique presence of Nanos in the germ line by a combination of selective RNA retention, distinctive translational control mechanisms (Oulhen et al., 2013), and now also by defined Nanos protein stability.

PubMed ID: 27424271
PMC ID: PMC5031544
Article link: Dev Biol
Grant support: [+]

Genes referenced: LOC100887844 LOC115919910
Antibodies: sumo2 Ab1 sumo2 Ab2 ube2i Ab1
Morpholinos: LOC576367 MO1 LOC589501 MO1 sumo2 MO1

References [+] :
Ahringer, Control of the sperm-oocyte switch in Caenorhabditis elegans hermaphrodites by the fem-3 3' untranslated region. 1991, Pubmed