Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Extremophiles 2013 Nov 01;176:1023-35. doi: 10.1007/s00792-013-0584-y.
Show Gene links Show Anatomy links

Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples.

Duarte AW , Dayo-Owoyemi I , Nobre FS , Pagnocca FC , Chaud LC , Pessoa A , Felipe MG , Sette LD .

The aim of the present study was to investigate the taxonomic identity of yeasts isolated from the Antarctic continent and to evaluate their ability to produce enzymes (lipase, protease and xylanase) at low and moderate temperatures. A total of 97 yeast strains were recovered from marine and terrestrial samples collected in the Antarctica. The highest amount of yeast strains was obtained from marine sediments, followed by lichens, ornithogenic soils, sea stars, Salpa sp., algae, sea urchin, sea squirt, stone with lichens, Nacella concinna, sea sponge, sea isopod and sea snail. Data from polyphasic taxonomy revealed the presence of 21 yeast species, distributed in the phylum Ascomycota (n = 8) and Basidiomycota (n = 13). Representatives of encapsulated yeasts, belonging to genera Rhodotorula and Cryptococcus were recovered from 7 different Antarctic samples. Moreover, Candida glaebosa, Cryptococcus victoriae, Meyerozyma (Pichia) guilliermondii, Rhodotorula mucilaginosa and R. laryngis were the most abundant yeast species recovered. This is the first report of the occurrence of some species of yeasts recovered from Antarctic marine invertebrates. Additionally, results from enzymes production at low/moderate temperatures revealed that the Antarctic environment contains metabolically diverse cultivable yeasts, which could be considered as a target for biotechnological applications. Among the evaluated yeasts in the present study 46.39, 37.11 and 14.43 % were able to produce lipase (at 15 °C), xylanase (at 15 °C) and protease (at 25 °C), respectively. The majority of lipolytic, proteolytic and xylanolytic strains were distributed in the phylum Basidiomycota and were mainly recovered from sea stars, lichens, sea urchin and marine sediments.

PubMed ID: 24114281
Article link: Extremophiles

Genes referenced: LOC100887844 LOC752081 LOC756768 snai2

References [+] :
Burgaud, Marine culturable yeasts in deep-sea hydrothermal vents: species richness and association with fauna. 2010, Pubmed