Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-42224
Yi Chuan 2011 Jul 01;337:684-94. doi: 10.3724/sp.j.1005.2011.00684.
Show Gene links Show Anatomy links

[Wnt signaling pathway and the Evo-Devo of deuterostome axis].

Qian GH , Wang YQ .


Abstract
A series of signal transduction pathways have been found to regulate the polarity establishment and formation of animal primary body axis. Among them, Wnt signaling pathway is extremely conserved and several key components in the pathway have been identified in the demosponge lineage. This implies that it is one of the earliest pathways involved in the ancestral metazoan axis development and might play an important role in specification and development of posterior and ventral fate of animal axis. Recently, with the establishment of functional experiments in vitro, the body plan formation has been found to be affected, in varying degrees, by many genes in the Wnt signaling pathway, such as members of wnt gene family, maternal gene beta-catenin and some transcription factor encoding genes. In this review, we analyzed the evolutionary origin of the wnt gene family involved in development of metazoan body plans, and then made a brief review on the roles of canonical Wnt/beta-catenin signaling in the polarity establishment and formation of primary body axis in diverse deuterostomes including sea urchin, amphioxus, zebrafish, frog, and mouse.

PubMed ID: 22049680
Article link: Yi Chuan


Genes referenced: LOC100887844 LOC594353