Click
here to close Hello! We notice that
you are using Internet Explorer, which is not supported by Echinobase
and may cause the site to display incorrectly. We suggest using a
current version of Chrome,
FireFox,
or Safari.
Stud Mycol
2011 Jan 01;68:57-78. doi: 10.3114/sim.2011.68.03.
Show Gene links
Show Anatomy links
Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs.
Chaverri P
,
Salgado C
,
Hirooka Y
,
Rossman AY
,
Samuels GJ
.
Abstract
Neonectria is a cosmopolitan genus and it is, in part, defined by its link to the anamorph genus Cylindrocarpon. Neonectria has been divided into informal groups on the basis of combined morphology of anamorph and teleomorph. Previously, Cylindrocarpon was divided into four groups defined by presence or absence of microconidia and chlamydospores. Molecular phylogenetic analyses have indicated that Neonectriasensu stricto and Cylindrocarponsensu stricto are phylogenetically congeneric. In addition, morphological and molecular data accumulated over several years have indicated that Neonectria sensu lato and Cylindrocarponsensu lato do not form a monophyletic group and that the respective informal groups may represent distinct genera. In the present work, a multilocus analysis (act, ITS, LSU, rpb1, tef1, tub) was applied to representatives of the informal groups to determine their level of phylogenetic support as a first step towards taxonomic revision of Neonectriasensu lato. Results show five distinct highly supported clades that correspond to some extent with the informal Neonectria and Cylindrocarpon groups that are here recognised as genera: (1) N. coccinea-group and Cylindrocarpon groups 1 & 4 (Neonectria/Cylindrocarponsensu stricto); (2) N.rugulosa-group (Rugonectria gen. nov.); (3) N. mammoidea/N. veuillotiana-groups and Cylindrocarpon group 2 (Thelonectria gen. nov.); (4) N. radicicola-group and Cylindrocarpon group 3 (Ilyonectria gen. nov.); and (5) anamorph genus Campylocarpon. Characteristics of the anamorphs and teleomorphs correlate with the five genera, three of which are newly described. New combinations are made for species where their classification is confirmed by phylogenetic data.
Fig. 1. Multilocus phylogenetic tree (Bayesian Inference) with the best log
likelihood (-44959.23). Support values indicated at nodes. Bayesian posterior
probabilities ≥ 90 %, Maximum Likelihood bootstrap ≥ 70 % and Phycas
posterior probabilities ≥ 90 % indicated by ***. If less than those values,
then indicated by -. Cylindrocarpon-like anamorphs are in two
paraphyletic clades: A and B.
Fig. 2. A–D.Campylocarpon. A–C. C. fasciculare
conidiophores and macroconidia
(CBS 112613). D.
C. pseudofasciculare chlamydospores
(CBS 112679). Bars:
10 μm.
Fig. 3. Ilyonectria. A, B. I. radicicola perithecia (A.R. 2553).
C, D. Crushed perithecium of I. radicicola showing perithecium wall
surface (A.R. 2553). E, F. Longitudinal section of perithecium (TFM
FPH-7807) of I. radicicola. G. Asci and ascospores of I.
radicicola (A.R. 2553). H–J. Conidiophores and conidia of I.
macrodydima (CBS
112615). K. Conidiophores and conidia of I. radicicola
(C.T.R. 71-76). L. Chlamydospores of I. radicicola (A.R. 2553). Bars:
A, B = 500 μm; C, E, F = 100 μm; D, G, J, L = 10 μm; H, I = 20 μm;
K = 50 μm.
Fig. 4. Neonectria. A, B. N. ditissima perithecia (A.R. 3690 =
BPI 870951). C, D.N. fuckeliana perithecia (A.R. 3103 = BPI 842140).
E. Top view of surface of N. fuckeliana perithecium (A.R. 3103 = BPI
842140). F–H. Longitudinal section of N. ditissima perithecia
(A.R. 3690 = BPI 870951). I. Asci and ascospores of N. ditissima
(A.R. 3703 = BPI 871120). J. Paraphyses of N. ditissima (A.R. = BPI
871120). K. Asci and ascospores of N. ditissima (A.R. 3703 = BPI
871120). L, M. Asci and ascospores of N. fuckeliana (A.R. 3103 = BPI
842140). N–R. Conidiophores and macroconidia of N. ditissima
(A.R. 3692 = CBS
119521 = BPI 871119). S–U. Conidiophores and microconidia of
N. fuckeliana (G.J.S. 02-67 =
CBS 125109 = BPI
842434). Bars: A, C = 1 mm; B, D = 500 μm; E, I–U = 10 μm; F, G =
100 μm; H = 50 μm.
Fig. 5. Rugonectria. A. Perithecia of R. neobalansae (G.J.S.
85-219, NY). B. Perithecia of R. rugulosa (G.J.S. 90-238 = BPI
1107399). C. Top view of surface of R. rugulosa perithecium (G.J.S.
90-238 = BPI 1107399). D, E. Longitudinal section of R. neobalansae
perithecium (G.J.S. 85-219, NY). F–H. Longitudinal section of R.
rugulosa (G.J.S. 90-238 = BPI 1107399). I. Ascospores of R.
neobalansae (G.J.S. 85-219, NY). J. Asci and ascospores of R.
rugulosa (G.J.S. 90-238 = BPI 1107399). K, L. Conidiophores and
macroconidia of R. castaneicola (MAFF 237284). M. Conidiophores and
macroconidia of R. rugulosa (G.J.S. 09-1337). N. Macroconidia of
R. rugulosa (MAFF 241491). O. Microconidia of R.
castaneicola (MAFF 237284). P, Q. Conidiophores and microconidia of
R. rugulosa (09-1337). Bars: A, B = 1 mm; C, I–Q = 10 μm;
D–H = 100 μm.
Fig. 6. Thelonectria. A. T. veuillotiana perithecia (A.R. 4505 =
BPI 878946). B. T. discophora perithecia (A.R. 4499 = BPI 878945). C.
T. jungneri perithecia (C.T.R. 71-244, NY). D. T. lucida
perithecia (C.T.R. 72-180, NY). E. T. veuillotiana perithecia (G.J.S.
90-48 = BPI 1107127). F. T. westlandica perithecia (G.J.S. 83-156,
PDD). G. Top view of surface of T. veuillotiana perithecium (A.R.
4505 = BPI 878946). H. Longitudinal section of T. discophora
perithecium (A.R. 4499 = BPI 878945). I, J. Longitudinal section of T.
veuillotiana perithecium (G.J.S. 90-48 = BPI 1107127). K. Asci and
ascospores of T. lucida (C.T.R. 72-180, NY). L, M. Conidiophores and
conidia of T. veuillotiana on natural substrate (G.J.S. 90-48 = BPI
1107127). N. Conidiophores and macroconidia of T. discophora (A.R.
4499 = BPI 878945). O. Conidiophores and macroconidia of T. olida
(CBS
215.67). P. Conidiophores and macroconidia of T.
veuillotiana (G.J.S. 90-48 = BPI 1107127). Q. Conidia of T.
trachosa (CBS
112467). R. Macroconidia of T. westlandica (G.J.S.
83-156, PDD). S. Reverse colony of T. discophora on PDA (A.R. 4499 =
BPI 878945). T. Reverse colony of T. veuillotiana on PDA (G.J.S.
90-48 = BPI 1107127). Bars: A–F = 500 μm; G, K–R = 10 μm; H,
J = 50 μm; I = 100 μm.
Andersen,
A polyphasic approach to the taxonomy of the Alternaria infectoria species-group.
2009, Pubmed
Andersen,
A polyphasic approach to the taxonomy of the Alternaria infectoria species-group.
2009,
Pubmed
Brayford,
Neonectria and Cylindrocarpon: the Nectria mammoidea group and species lacking microconidia.
2004,
Pubmed
,
Echinobase
Brayford,
CMI descriptions of pathogenic fungi and bacteria No. 930. Cylindrocarpon vaginae.
1987,
Pubmed
Chaverri,
A monograph of the entomopathogenic genera Hypocrella, Moelleriella, and Samuelsia gen. nov. (Ascomycota, Hypocreales, Clavicipitaceae), and their aschersonia-like anamorphs in the Neotropics.
2008,
Pubmed
Chaverri,
Hypocrea/Trichoderma: species with conidiophore elongations and green conidia.
2003,
Pubmed
Crous,
Phylogenetic lineages in the Botryosphaeriaceae.
2006,
Pubmed
Galtier,
SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny.
1996,
Pubmed
Halleen,
Neonectria liriodendri sp. nov., the main causal agent of black foot disease of grapevines.
2006,
Pubmed
Hirooka,
Neonectria castaneicola and Neo. rugulosa in Japan.
2005,
Pubmed
Huelsenbeck,
Potential applications and pitfalls of Bayesian inference of phylogeny.
2002,
Pubmed
Huelsenbeck,
Bayesian inference of phylogeny and its impact on evolutionary biology.
2001,
Pubmed
Katoh,
MAFFT version 5: improvement in accuracy of multiple sequence alignment.
2005,
Pubmed
Lewis,
Polytomies and Bayesian phylogenetic inference.
2005,
Pubmed
Lombard,
Calonectria (Cylindrocladium) species associated with dying Pinus cuttings.
2009,
Pubmed
Luo,
Chaetopsinectria (Nectriaceae, Hypocreales), a new genus with Chaetopsina anamorphs.
2010,
Pubmed
Luo,
Three new species of Neonectria (Nectriaceae, Hypocreales) with notes on their phylogenetic positions.
2010,
Pubmed
Mau,
Bayesian phylogenetic inference via Markov chain Monte Carlo methods.
1999,
Pubmed
Posada,
Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests.
2004,
Pubmed
Posada,
jModelTest: phylogenetic model averaging.
2008,
Pubmed
Rannala,
Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference.
1996,
Pubmed
Reeb,
Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory.
2004,
Pubmed
Samuels,
The Trichoderma koningii aggregate species.
2006,
Pubmed
Schmidt,
An integrated taxonomic study of Fusarium langsethiae, Fusarium poae and Fusarium sporotrichioides based on the use of composite datasets.
2004,
Pubmed
Seifert,
Molecular Differentiation and Detection of Ginseng-Adapted Isolates of the Root Rot Fungus Cylindrocarpon destructans.
2003,
Pubmed
Zare,
The type species of Verticillium is not congeneric with the plant-pathogenic species placed in Verticillium and it is not the anamorph of 'Nectria' inventa.
2004,
Pubmed
,
Echinobase