Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-39747
Dev Biol 2006 May 15;2932:555-64. doi: 10.1016/j.ydbio.2006.02.024.
Show Gene links Show Anatomy links

cis-Regulatory control of cyclophilin, a member of the ETS-DRI skeletogenic gene battery in the sea urchin embryo.

Amore G , Davidson EH .


Abstract
The Strongylocentrotus purpuratus cyclophilin1 gene (Sp-cyp1) is expressed exclusively in skeletogenic mesenchyme cells of the embryo, beginning in the micromere lineage of the early blastula stage and continuing after gastrulation during the syncytial deposition of the skeleton. This gene encodes a protein which is a member of the peptidyl-prolyl cis-trans isomerase (PPIase) family. Sp-cyp1 is among the differentiation genes activated in the skeletogenic territory as a terminal function of the endomesodermal gene regulatory network. Network perturbation analysis had predicted the skeletogenic regulators Ets1 and Deadringer (Dri) to be its driver inputs. Here, we show that a 218-bp cis-regulatory DNA fragment recapitulates skeletogenic Sp-cyp1 expression; that elimination of either Ets1 or Dri inputs severely depresses the activity of expression constructs containing this DNA fragment; and that Ets1 and Dri target sites within the 218 bp fragment are required for normal expression. This indicates that the predicted inputs are direct. Other studies indicate that the same inputs are evidently necessary for expression of several other skeletogenic differentiation genes, and these genes probably constitute a skeletogenic gene battery, defined by its Ets plus Dri regulatory inputs.

PubMed ID: 16574094
Article link: Dev Biol
Grant support: [+]

Genes referenced: arid3a ets1 LOC100887844 LOC115918463