Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
J Cell Biochem 2004 Dec 15;936:1075-83. doi: 10.1002/jcb.20268.
Show Gene links Show Anatomy links

Zymogen activation and characterization of a major gelatin-cleavage activity localized to the sea urchin extraembryonic matrix.

Ranganathan L , Rimsay R , Robinson JJ .

The hyaline layer (HL) is an apically located extracellular matrix (ECM) which surrounds the sea urchin embryo from the time of fertilization until metamorphosis occurs. While gelatin-cleavage activities were absent from freshly prepared hyaline layers, a dynamic pattern of activities developed in layers incubated at 15 or 37 degrees C in Millipore-filtered sea water (MFSW). Cleavage activities at 90, 55, 41, and 32 kDa were evident following incubation at either temperature. The activation pathway leading to the appearance of these species was examined to determine the minimum salt conditions required for processing and to establish precursor-product relationships. In both qualitative and quantitative assays, the purified 55 kDa gelatinase activity was inhibited by 1,10-phenanthroline (a zinc-specific chelator) and ethylenebis (oxyethylenenitrilo) tetraacetic acid (EGTA). Calcium reconstituted the activity of the EGTA-inhibited enzyme with an apparent dissociation constant (calcium) of 1.2 mM. Developmental substrate gel analysis was performed using various stage embryos. The 55 and 32 kDa species comigrated with gelatin-cleavage activities present in sea urchin embryos. Collectively, the results reported here document a zymogen activation pathway which generates a 55 kDa, gelatin-cleaving activity within the extraembryonic HL. This species displayed characteristics of the matrix metalloproteinase class of ECM modifying enzymes.

PubMed ID: 15449315
Article link: J Cell Biochem

Genes referenced: LOC100887844