Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-37861
Dev Biol 2001 Aug 01;2361:46-63. doi: 10.1006/dbio.2001.0285.
Show Gene links Show Anatomy links

Evidence for a mesodermal embryonic regulator of the sea urchin CyIIa gene.

Martin EL , Consales C , Davidson EH , Arnone MI .


Abstract
The CyIIa gene of the sea urchin embryo is a model for study of cis-regulation downstream of cell-type specification, as CyIIa transcription follows the specification and initial differentiation of the embryonic domains in which it is expressed. These are the skeletogenic and secondary mesenchyme and gut. We carried out a detailed structural and functional analysis of a cis-regulatory region of this gene, extending 780 bp upstream and 125 bp downstream of the transcription start site, that had been shown earlier to reproduce faithfully the complex and dynamic CyIIa pattern of expression. This analysis revealed that the overall pattern of expression of the CyIIa gene appears to be governed mainly by two independent sets of DNA elements, which are target sites for specific proteins present in blastula-stage nuclear extract. One type of element, which controls a dynamic program of expression in both skeletogenic and secondary mesenchyme cells, contains the consensus-binding site for a member of the ets transcription factor family. The other, which is responsible for the terminal or permanent phase of CyIIa expression in the gut, shares homologies with the late module of the endoderm-specific Endo16 gene (endo16 Module B). Oligonucleotides containing replicas of these two target sites fused upstream of a sea urchin basal promoter are sufficient to confer accurate mesenchyme and late gut expression of an injected GFP construct. The finding of a single protein target site that recapitulates CyIIa expression in both primary and secondary mesenchyme cells suggests the existence of a pan-mesodermal gene expression program in the sea urchin embryo.

PubMed ID: 11456443
Article link: Dev Biol
Grant support: [+]

Genes referenced: endo16 LOC100887844 LOC115919910 LOC115926321 potej stk36