Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-37677
Biochem J 2001 Feb 01;353Pt 3:555-60. doi: 10.1042/0264-6021:3530555.
Show Gene links Show Anatomy links

Role of Ins(1,4,5)P3, cADP-ribose and nicotinic acid-adenine dinucleotide phosphate in Ca2+ signalling in mouse submandibular acinar cells.

Harmer AR , Gallacher DV , Smith PM .


???displayArticle.abstract???
cADP-ribose (cADPr) and nicotinic acid-adenine dinucleotide phosphate (NAADP) are two putative second messengers; they were first shown to stimulate Ca(2+) mobilization in sea urchin eggs. We have used the patch-clamp whole-cell technique to determine the role of cADPr and NAADP in relation to that of Ins(1,4,5)P(3) in mouse submandibular acinar cells by measuring agonist-evoked and second-messenger-evoked changes in Ca(2+)-dependent K(+) and Cl(-) currents. Both Ins(1,4,5)P(3) and cADPr were capable of reproducing the full range of responses normally seen in response to stimulation with acetylcholine (ACh). Low concentrations of agonist (10-20 nM ACh) or second messenger [1-10 microM Ins(1,4,5)P(3) or cADPr] elicited a sporadic transient activation of the Ca(2+)-dependent currents; mid-range concentrations [50-500 nM ACh, 50 microM Ins(1,4,5)P(3) or 50-100 microM cADPr] elicited high-frequency (approx. 2 Hz) trains of current spikes; and high concentrations [more than 500 nM ACh, more than 50 microM Ins(1,4,5)P(3) or more than 100 microM cADPr] gave rise to a sustained current response. The response to ACh was inhibited by antagonists of both the Ins(1,4,5)P(3) receptor [Ins(1,4,5)P(3)R] and the ryanodine receptor (RyR) but could be completely blocked only by an Ins(1,4,5)P(3)R antagonist (heparin). NAADP (50 nM to 100 microM) did not itself activate the Ca(2+)-dependent ion currents, nor did it inhibit the activation of these currents by ACh. These results show that, in these cells, both Ins(1,4,5)P(3)R and RyR are involved in the propagation of the Ca(2+) signal stimulated by ACh and that cADPr can function as an endogenous regulator of RyR. Furthermore, although NAADP might have a role in hormone-stimulated secretion in pancreatic acinar cells, it does not contribute to ACh-evoked secretion in submandibular acinar cells.

???displayArticle.pubmedLink??? 11171052
???displayArticle.pmcLink??? PMC1221601
???displayArticle.link??? Biochem J


Genes referenced: LOC100887844 LOC115919080 LOC115919910 LOC574780 LOC576539

References [+] :
Aarhus, ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. 1995, Pubmed