Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Dev Biol 1999 Dec 01;2161:394-405. doi: 10.1006/dbio.1999.9513.
Show Gene links Show Anatomy links

The roles of changes in NADPH and pH during fertilization and artificial activation of the sea urchin egg.

Schomer Miller B , Epel D .

Incubating unfertilized sea urchin eggs in weak bases activates nuclear centering, DNA synthesis, and chromosome cycles. These effects were initially attributed to raising the intracellular pH (pH(i)), but later experiments indicated that these weak bases also lead to increases in reduced pyridine nucleotides. These findings raised the question whether the activation of the nucleus was due to increased pH(i) or to increased NAD(P)H or possibly other effects. This report attempts to clarify how ammonia activates eggs by independently altering NADPH and pH(i). To increase the pH(i), unfertilized eggs were injected with zwitterionic buffers. This stimulated pronuclear centering, DNA synthesis, and nuclear envelope breakdown; there appeared to be a threshold corresponding to the fertilized pH(i). However, like incubation in ammonia, injection of base also increased NAD(P)H. The NAD(P)H rise caused by directly raising the pH(i) occurred in the presence of intracellular calcium chelators, indicating that calcium is not required. Increasing NAD(P)H alone did not activate nuclear centering, DNA synthesis, or nuclear envelope breakdown. Although these experiments cannot eliminate a role for the NADPH increase in initiating events leading to nuclear centering and entry into mitosis, they provide additional and strong evidence that increasing the pH(i) may be a primary signal.

PubMed ID: 10588888
Article link: Dev Biol

Genes referenced: LOC100887844