Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-36495
J Cell Sci 1996 Mar 01;109 ( Pt 3):561-7.
Show Gene links Show Anatomy links

Katanin, the microtubule-severing ATPase, is concentrated at centrosomes.

McNally FJ , Okawa K , Iwamatsu A , Vale RD .


Abstract
The assembly and function of the mitotic spindle involve specific changes in the dynamic properties of microtubules. One such change results in the poleward flux of tubulin in which spindle microtubules polymerize at their kinetochore-attached plus ends while they shorten at their centrosome-attached minus ends. Since free microtubule minus ends do not depolymerize in vivo, the poleward flux of tubulin suggests that spindle microtubules are actively disassembled at or near their centrosomal attachment points. The microtubule-severing ATPase, katanin, has the ability actively to sever and disassemble microtubules and is thus a candidate for the role of a protein mediating the poleward flux of tubulin. Here we determine the subcellular localization of katanin by immunofluorescence as a preliminary step in determining whether katanin mediates the poleward flux of tubulin. We find that katanin is highly concentrated at centrosomes throughout the cell cycle. Katanin''s localization is different from that of gamma-tubulin in that microtubules are required to maintain the centrosomal localization of katanin. Direct comparison of the localization of katanin and gamma-tubulin reveals that katanin is localized in a region surrounding the gamma-tubulin-containing pericentriolar region in detergent-extracted mitotic spindles. The centrosomal localization of katanin is consistent with the hypothesis that katanin mediates the disassembly of microtubule minus ends during poleward flux.

PubMed ID: 8907702

Grant support: [+]

Genes referenced: LOC115919910 LOC581395 tubgcp2
Antibodies: katnal1 Ab1 katnb1 Ab1 katnb1 Ab2 tubb1 Ab1