Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-54544
Antibiotics (Basel) 2025 Nov 20;1411:. doi: 10.3390/antibiotics14111170.
Show Gene links Show Anatomy links

Harnessing Copper Nanoparticles for Antimicrobial Applications: Advances and Challenges.

Pellosi DS , Paiva GSM , Vital VG , Mendes AL , Santos NG , Kuriki FK , Lira KDL , Oliveira GCM , Gomes YR , Lobo FG , Santos VT , Silva MR , Silva RAG , Vasconcellos SP .


???displayArticle.abstract???
Antimicrobial resistance (AMR) is one of the most significant global health threats of the 21st century, driving the urgent search for alternatives to conventional antibiotics. Copper nanoparticles (CuNPs) have gained attention due to their broad antimicrobial spectrum, cost-effectiveness, and versatile applications in medicine, agriculture, and the food industry. This review provides a systematic overview of the advances in CuNP synthesis, mechanisms of antimicrobial action, biomedical and industrial applications, and associated toxicity issues. A comprehensive literature review was conducted, covering chemical, physical, and biological synthesis strategies; mechanistic studies on microbial inhibition; and experimental reports on biomedical and environmental applications. A comparative analysis revealed opportunities, limitations, and knowledge gaps, with particular emphasis on cytotoxic and ecotoxicological aspects. CuNPs show strong antimicrobial activity against bacteria, fungi, viruses, and multidrug-resistant strains through mechanisms such as reactive oxygen species (ROS) generation, membrane disruption, and DNA/protein interactions. Their use in medical devices, wound dressings, textiles, and packaging materials underlines their application potential. However, cytotoxicity to mammalian cells, ecological risks, and the lack of standardized safety protocols remain critical challenges. Particle size, morphology, and surface chemistry strongly influence both efficacy and toxicity, underlining the importance of controlled synthesis and functionalization. Overall, CuNPs represent a promising strategy to tackle the AMR crisis. Future research should focus on environmentally friendly and surface-modified synthesis approaches, standardized toxicity assessments, and robust regulatory frameworks. By balancing antimicrobial efficacy with biosafety and sustainability, CuNPs could become a transformative platform for clinical, industrial, and environmental applications.

???displayArticle.pubmedLink??? 41301665
???displayArticle.link??? Antibiotics (Basel)
???displayArticle.grants??? [+]