ECB-ART-53815
J Oral Biol Craniofac Res
2025 Mar 11;153:463-471. doi: 10.1016/j.jobcr.2025.02.014.
Show Gene links
Show Anatomy links
Chitosan from sea urchin (Diadema setosum) spines for orthodontic miniscrews: Antibacterial effects against key oral pathogens.
???displayArticle.abstract???
OBJECTIVE: Peri-implantitis, exacerbated microbial growth characterized by progressive bone loss and soft-tissue inflammation, significantly contributes to miniscrew failure during orthodontic treatment. Using a natural antibacterial coating presents an innovative approach to combat bacterial colonization. Sea urchin (Diadema setosum) spines containing chitosan (CS) exhibit notable antibacterial properties and biocompatibility effects. This study investigates the antimicrobial potential of CS from sea urchin spines applied onto the surfaces of orthodontic miniscrews, aiming to mitigate the impact of peri-implantitis. MATERIALS AND METHODS: The surface functional groups, phase composition, and crystal structure of CS were investigated using traditional examination methods alongside energy-dispersive X-ray analysis. The antibacterial activity of CS was evaluated against three bacteria by the disk diffusion method, minimum bacterial concentration (MBC), and minimum inhibitory concentration (MIC). Stainless steel miniscrews were coated with CS, and the surface was characterized by scanning electron microscopy (SEM). RESULTS AND DISCUSSION: Sea urchin-derived chitosan demonstrated significant antibacterial effects against key oral pathogens associated with peri-implantitis, with minimum inhibitory concentrations (MICs) of 16 ppm against Fusobacterium nucleatum and 32 ppm for both Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis. The minimum bactericidal concentrations (MBCs) were 4 ppm for A. actinomycetemcomitans and 16 ppm for both F. nucleatum and P. gingivalis, indicating its strong bactericidal potential. Scanning electron microscopy (SEM) revealed that sea urchin chitosan effectively adhered to the surface of orthodontic miniscrews, showcasing its potential as a functional antimicrobial coating. These results emphasize the capability of sea urchin chitosan to target key oral pathogens, offering a promising approach to enhance microbial resistance and improve outcomes in orthodontic treatments.
???displayArticle.pubmedLink??? 40144647
???displayArticle.link??? J Oral Biol Craniofac Res