Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-53002
Chemistry 2024 Mar 22;:e202400946. doi: 10.1002/chem.202400946.
Show Gene links Show Anatomy links

Synthesis and Structural Revision of a Natural Tetrasaccharide from Starfish Asterias rollestoni Bell.

Liu A , Gao L , Tang X , Yang X , Liu X , Xie W , Qi J , Li W .


???displayArticle.abstract???
Starfish provide important saponins with diverse bioactivities as the secondary metabolites, among which 2-O-glycosylated glycosides are commonly found. Preparation of those 1,2-trans 2-O-glycosylated glycosides usually relies on 2-O-acyl participation requiring the selective installation and cleavage of 2-O-acyl groups. A convergent synthesis using 2-O-glycosylated oligosaccharide donors would be more straightforward but also pose greater challenges. Herein, we report a convergent synthesis of a distinctive tetrasaccharide isolated from starfish Asterias rollestoni Bell. Dual 2-(diphenylphosphinoyl)acetyl (DPPA) groups at O3 and O4 on galactose moiety led to high β-selectivities (β/α=12/1 or β only) in the challenging [2+2] glycosylation, giving the desired tetrasaccharides in >90 % yields from the 2-O-glycosylated disaccharide donors. These synthetic studies have also unambiguously revised the structure of these natural tetrasaccharides. This work would facilitate further studies on new inhibitors of α-glucosidase as hypoglycemic drugs.

???displayArticle.pubmedLink??? 38516955
???displayArticle.link??? Chemistry
???displayArticle.grants??? [+]