Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-52901
Chemphyschem 2024 Feb 15;:e202300414. doi: 10.1002/cphc.202300414.
Show Gene links Show Anatomy links

Hierarchical Sea Urchin-like Fe-doped Heazlewoodite for High-Efficient Oxygen Evolution.

Shang K , Guo J , Ma Y , Liu H , Zhang X , Wang H , Wang J , Yan Z .


???displayArticle.abstract???
Electrochemical water-splitting to produce hydrogen is potential to substitute the traditional industrial coal gasification, but the oxygen evolution kinetics at the anode remains sluggish. In this paper, sea urchin-like Fe doped Ni3S2 catalyst growing on nickel foam (NF) substrate is constructed via a simple two-step strategy, including surface iron activation and post sulfuration process. The NF-Fe-Ni3S2 obtains at temperature of 130 °C (NF-Fe-Ni3S2-130) features nanoneedle-like arrays which are vertically grown on the particles to form sea urchin-like morphology, features high electrochemical surface area. As oxygen evolution catalyst, NF-Fe-Ni3S2-130 exhibits excellent oxygen evolution activities, fast reaction kinetics, and superior reaction stability. The excellent OER performance of sea urchin-like NF-Fe-Ni3S2-130 is mainly ascribed to the high-vertically dispersive of nanoneedles and the existing Fe dopants, which obviously improved the reaction kinetics and the intrinsic catalytic properties. The simple preparation strategy is conducive to establish high-electrochemical-interface catalysts, which shows great potential in renewable energy conversion.

???displayArticle.pubmedLink??? 38361446
???displayArticle.link??? Chemphyschem
???displayArticle.grants??? [+]