Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-52852
Mol Nutr Food Res 2024 Jan 01;682:e2300344. doi: 10.1002/mnfr.202300344.
Show Gene links Show Anatomy links

Preparation of Novel Sea Cucumber Intestinal Peptides to Promote Tibial Fracture Healing in Mice by Inducing Differentiation of Hypertrophic Chondrocytes to the Osteoblast Lineage.

Yin H , Yue H , Wang M , Zhang T , Zhao YT , Liu H , Wang J , Zheng H , Xue C .


???displayArticle.abstract???
SCOPE: Hypertrophic chondrocytes have a decisive regulatory role in the process of fracture healing, and the fate of hypertrophic chondrocytes is not only apoptosis. However, the mechanism of sea cucumber (Stichopus japonicus) intestinal peptide (SCIP) on fracture promotion is still unclear. This study aims to investigate the effect of sea cucumber intestinal peptide on the differentiation fate of hypertrophic chondrocytes in a mouse tibial fracture model. METHODS AND RESULTS: Mice are subjected to open fractures of the right tibia to establish a tibial fracture model. The results exhibit that the SCIP intervention significantly promotes the mineralization of cartilage callus, decreases the expression of the hypertrophic chondrocyte marker Col X, and increases the expression of the osteoblast marker Col I. Mechanically, SCIP promotes tibial fracture healing by promoting histone acetylation and inhibiting histone methylation, thereby upregulating pluripotent transcription factors induced the differentiation of hypertrophic chondrocytes to the osteoblast lineage in a manner distinct from classical endochondral ossification. CONCLUSION: This study is the first to report that SCIP can promote tibial fracture healing in mice by inducing the differentiation of hypertrophic chondrocytes to the osteoblast lineage. SCIP may be considered raw material for developing nutraceuticals to promote fracture healing.

???displayArticle.pubmedLink??? 38100188
???displayArticle.link??? Mol Nutr Food Res
???displayArticle.grants??? [+]