Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-52597
Ecol Appl 2023 Oct 01;337:e2895. doi: 10.1002/eap.2895.
Show Gene links Show Anatomy links

Long-term marine protection enhances kelp forest ecosystem stability.

Peleg O , Blain CO , Shears NT .


???displayArticle.abstract???
Trophic downgrading destabilizes ecosystems and can drive large-scale shifts in ecosystem state. While restoring predatory interactions in marine reserves can reverse anthropogenic-driven shifts, empirical evidence of increased ecosystem stability and persistence in the presence of predators is scant. We compared temporal variation in rocky reef ecosystem state in New Zealand's oldest marine reserve to nearby fished reefs to examine whether protection of predators led to more persistent and stable reef ecosystem states in the marine reserve. Contrasting ecosystem states were found between reserve and fished sites, and this persisted over the 22-year study period. Fished sites were predominantly urchin barrens but occasionally fluctuated to short-lived turfs and mixed algal forests, while reserve sites displayed unidirectional successional trajectories toward stable kelp forests (Ecklonia radiata) taking up to three decades following protection. This provides empirical evidence that long-term protection of predators facilitates kelp forest recovery, resists shifts to denuded alternate states, and enhances kelp forest stability.

???displayArticle.pubmedLink??? 37282356
???displayArticle.link??? Ecol Appl