Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-52529
Sci Total Environ 2024 Jan 01;906:167465. doi: 10.1016/j.scitotenv.2023.167465.
Show Gene links Show Anatomy links

Seagrass meadows as ocean acidification refugia for sea urchin larvae.

Ravaglioli C , De Marchi L , Giannessi J , Pretti C , Bulleri F .


???displayArticle.abstract???
Foundation species have been widely documented to provide suitable habitats for other species by ameliorating stressful environmental conditions. Nonetheless, their role in rescuing stress-sensitive species from adverse conditions due to climate change remains often unexplored. Here, we performed a mesocosm experiment to assess whether the seagrass, Posidonia oceanica, through its photosynthetic activity, could mitigate the negative effects of ocean acidification on larval development and growth of the calcifying sea urchin, Paracentrotus lividus. Sea urchin larvae at early and late developmental stages that are generally associated to benthic habitats, were grown in aquaria with or without P. oceanica plants, under ambient or low pH conditions predicted by the end of the century under the worst climate scenario (RCP8.5). The percentage of abnormal larvae and their total body length under different experimental conditions were assessed on early- (i.e., pluteus; 72 h post-fertilization) and final-developmental stages (i.e., echinopluteus; 30 days post-fertilization), respectively. The presence of P. oceanica increased mean daily pH values of ∼0.1 and ∼0.15 units at ambient and low pH conditions, respectively, compared with tanks without plants. When grown at low pH in association with P. oceanica, plutei showed a ∼23 % reduction of malformations and echinoplutei a ∼34 % increase in total body length, respectively, compared with larvae developing in tanks without plants. Our results suggest that P. oceanica, by increasing pH and altering seawater carbonate chemistry through its metabolic activity, could buffer the negative effects of ocean acidification on calcifying organisms and could, thus, represent a tool against climate-driven loss of biodiversity.

???displayArticle.pubmedLink??? 37778543
???displayArticle.link??? Sci Total Environ