Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-52463
Int J Biol Macromol 2023 Sep 18;253Pt 3:126950. doi: 10.1016/j.ijbiomac.2023.126950.
Show Gene links Show Anatomy links

Fabrication of versatile polyvinyl alcohol and carboxymethyl cellulose-based hydrogels for information hiding and flexible sensors: Heat-induced adjustable stiffness and transparency.

Sun Y , Shi F , Tian R , Zhao X , Li Q , Song C , Du Y , He X , Fu J .


???displayArticle.abstract???
With the growing demand for wearable electronics, designing biocompatible hydrogels that combine self-repairability, wide operating temperature and precise sensing ability offers a promising scheme. Herein, by interpenetrating naturally derived carboxymethyl cellulose (CMC) into a polyvinyl alcohol (PVA) gel matrix, a novel hydrogel is successfully developed via simple coordination with calcium chloride (CaCl2). The chelation of CMC and Ca2+ is applied as a second crosslinking mechanism to stabilize the hydrogel at relatively high temperature (95 °C). In particular, it has unique heat-induced healing behavior and unexpected tunable stiffness & transparency. Like the sea cucumber, the gel can transform between a stiffened state and a relaxed state (nearly 23 times modulated stiffness from 453 to 20 kPa) which originates from the reconstruction of the crystallites. The adjustable transparency enables the hydrogel to become an excellent information hiding material. Due to the presence of Ca2+, the hydrogels show favorable conductivity, anti-freezing and long-term stability. Based on the advantages, a self-powered sensor, where chemical energy is converted to electrical energy, is assembled for human motion detection. The low-cost, environmentally friendly strategy, at the same time, complies to the "green" chemistry concept with the full employment of the biopolymers. Therefore, the proposed hydrogel is deemed to find potential use in wearable sensors.

???displayArticle.pubmedLink??? 37729995
???displayArticle.link??? Int J Biol Macromol