Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-52087
Brain Res 2022 Nov 15;1795:148079. doi: 10.1016/j.brainres.2022.148079.
Show Gene links Show Anatomy links

Membrane estrogen receptor ERα activation improves tau clearance via autophagy induction in a tauopathy cell model.

Costa AJ , Oliveira RB , Wachilewski P , Nishino MS , Bassani TB , Stilhano RS , Cerutti JM , Nozima B , Porto CS , Pereira GJDS , Ramirez AL , Smaili SS , Ureshino RP .


???displayArticle.abstract???
Alzheimer's disease (AD) is the most prevalent aging-associated neurodegenerative disease, with a higher incidence in women than men. There is evidence that sex hormone replacement therapy, particularly estrogen, reduces memory loss in menopausal women. Neurofibrillary tangles are associated with tau protein aggregation, a characteristic of AD and other tauopathies. In this sense, autophagy is a promising cellular process to remove these protein aggregates. This study evaluated the autophagy mechanisms involved in neuroprotection induced by 17β-estradiol (E2) in a Tet-On inducible expression tauopathy cell model (EGFP-tau WT or with the P301L mutation, 0N4R isoform). The results indicated that 17β-estradiol induces autophagy by activating AMPK in a concentration-dependent manner, independent of mTOR signals. The estrogen receptor α (ERα) agonist, PPT, also induced autophagy, while the ERα antagonist, MPP, substantially attenuated the 17β-estradiol-mediated autophagy induction. Notably, 17β-estradiol increased LC3-II levels and phosphorylated and total tau protein clearance in the EGFP-tau WT cell line but not in EGPF-tau P301L. Similar results were observed with E2-BSA, a plasma membrane-impermeable estrogen, suggesting membrane ERα involvement in non-genomic estrogenic pathway activation. Furthermore, 17β-estradiol-induced autophagy led to EGFP-tau protein clearance. These results demonstrate that modulating autophagy via the estrogenic pathway may represent a new therapeutic target for treating AD.

???displayArticle.pubmedLink??? 36088959
???displayArticle.link??? Brain Res