Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-51910
Dev Growth Differ 1986 Feb 01;281:31-42. doi: 10.1111/j.1440-169X.1986.00031.x.
Show Gene links Show Anatomy links

Behavior of Primary Mesenchyme Cells In situ Associated with Ultrastructural Alteration of the Blastocoelic Material in the Sea Urchin, Anthocidaris crassispina: (migration/primary mesenchyme cell/extracellular matrix).

Katow H , Amemiya S .


???displayArticle.abstract???
In the blastula of the sea urchin, Anthocidaris crassispina, a small number of primary mesenchyme cells (PMCs) ingressed from the blastocoel wall taking a bottle shape. The majority of the PMCs followed the first group of PMCs. These ingressed without taking the bottle shape, and became round within the blastocoel wall. After ingression, the PMCs migrated as single cells retaining their round cell contour. The average velocity of their migration was 13.3 μm/hr. The blastocoel contained Alcian blue (pH 1.0)-positive material which changed its light microscopic configuration from being amorphous in the hatched and mesenchyme blastulae to being fibrous in the early gastrulae. Ultrastructurally, the blastocoelic material in the hatched blastulae was composed of 27 nm diameter granules. In the mesenchyme blastulae and the early gastrulae relatively long 15 nm diameter fibers were seen in addition to the 27 nm diameter granules. The 27 nm diameter granules bound the ruthenium red while the 15 nm diameter fibers did not. The 27 nm diameter granules formed aggregates in the hatched blastulae, and were bound to the 15 nm diameter fibers in the mesenchyme blastulae and early gastrulae to form a fibrous network which was observed by a light microscope.

???displayArticle.pubmedLink??? 37281152
???displayArticle.link??? Dev Growth Differ



References [+] :
Akasaka, Sulfated glycan present in the EDTA extract of Hemicentrotus embryos (mid-gastrula). 1983, Pubmed, Echinobase