Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-51891
Environ Sci Pollut Res Int 2022 Nov 01;2953:79855-79865. doi: 10.1007/s11356-021-18484-1.
Show Gene links Show Anatomy links

Removal of the pesticide thiamethoxam from sugarcane juice by magnetic nanomodified activated carbon.

de Freitas DA , Barbosa JA , Labuto G , Nocelli RCF , Carrilho ENVM .


???displayArticle.abstract???
The removal of the neonicotinoid and systemic pesticide thiamethoxam (TMX) from water and sugarcane juice by magnetic nanomodified activated carbon (AC-NP) is proposed. This adsorbent was synthesized and characterized by FTIR, XRD, and SEM, and TMX was quantified by high-performance liquid chromatography coupled to a diode array detector (HPLC-DAD). The AC-NP was efficiently synthesized using a co-precipitation method and the impregnation of magnetite (NP) in the activated carbon (AC) was assessed by the crystalline planes found in the AC-NP structure shown in the XRD diffractograms. The AC-NP FTIR analysis also indicated predominant bands of Fe-O stretching of the magnetite at 610-570 cm-1. Functional groups in AC and AC-NP were identified by absorption bands at 3550 and 1603 cm-1, characteristic of O-H and C = C, respectively. The TMX adsorption kinetics in sugarcane juice was the pseudo-second-order type with r2 = 0.9999, indicating a chemical adsorption process. The experimental sorption capacity (SCexp) for both TMX (standard) and TMX-I (insecticide) by AC-NP were 13.44 and 42.44 mg/g, respectively. Seven non-linear isotherm models (Langmuir, Freundlich, Dubinin-Radushkevich, Toth, Hill, Sips, and Redlich-Peterson) were fitted to the experimental adsorption data of TMX and TMX-I by AC-NP. Considering the standard error (SE), Freundlich, Langmuir, and Sips were the most appropriate models to describe the TMX adsorption, and Hill's best adjusted to TMX-I experimental data. The chromatographic method was highly satisfactory due to its high selectivity and recovery (91-103%). The efficiency of AC-NP in the sorption of TMX was confirmed by the excellent values of SCexp and sorption kinetics.

???displayArticle.pubmedLink??? 34997927
???displayArticle.link??? Environ Sci Pollut Res Int
???displayArticle.grants??? [+]


References [+] :
Abilio, Hexavalent chromium removal from water: adsorption properties of in natura and magnetic nanomodified sugarcane bagasse. 2021, Pubmed