Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-51423
Environ Toxicol Pharmacol 2023 Jun 01;100:104147. doi: 10.1016/j.etap.2023.104147.
Show Gene links Show Anatomy links

Bioconcentration of pharmaceuticals in benthic marine organisms (Holothuria tubulosa, Anemonia sulcata and Actinia equina) exposed to environmental contamination by atenolol and carbamazepine.

Del Carmen Gómez-Regalado M , Martín J , Hidalgo F , Santos JL , Aparicio I , Alonso E , Zafra-Gómez A .


???displayArticle.abstract???
The present work assess the bioconcentration kinetics of atenolol (ATN) and carbamazepine (CBZ) in common marine organisms including Holothuria tubulosa, Anemonia sulcata and Actinia equina under controlled laboratory conditions. CBZ exhibited higher uptake and excretion rates resulting higher bioconcentration factor (BCF) (41-537 L/kg for CBZ vs 7-50 L/kg for ATN) although both are below the limits established by the European Union (EU). The measured BCF using kinetic data showed some differences with those predicted using the concentrations measured at the steady-state, probably explained because the steady state was not ready reached. The animal-specific BCF followed the order of Holothuria tubulosa > Actinia equina > Anemonia sulcata for ATN while was the opposite for CBZ. The study highlighted between-tissues differences in the digestive tract and the body wall of the Holothuria tubulosa. The work presented is the first to model bioconcentration of ATN and CBZ in holothurian and anemone animal models.

???displayArticle.pubmedLink??? 37182729
???displayArticle.link??? Environ Toxicol Pharmacol