Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-51026
Dalton Trans 2022 Aug 02;5130:11427-11436. doi: 10.1039/d2dt01268e.
Show Gene links Show Anatomy links

One-pot production of a sea urchin-like alloy electrocatalyst for the oxygen electro-reduction reaction.

Pham HQ , Huynh TT .


???displayArticle.abstract???
Designing a cost-effective catalyst with high performance towards the oxygen electro-oxidation reaction (ORR) is of great interest for the development of green energy storage and conversion technologies. We report herein a facile self-assembly strategy in a mild reducing environment to realize an urchin-like NiPt bimetallic alloy with the domination of the (111) facets as an efficient ORR electrocatalyst. In the rotating-disk electrode test, the as-obtained NiPt nanourchins (NUCs)/C catalyst demonstrates an increase in both onset potential (0.96 VRHE) and half-wave potential (0.92 VRHE) and a direct four-electron ORR pathway with enhanced reaction kinetics. Additionally, the as-made NiPt NUCs/C electrocatalyst also shows impressive ORR catalytic stability compared to a commercial Pt NPs/C catalyst after an accelerated durability test with 15.29% degradation in mass activity, which is 3.04-times lower than 46.48% of the Pt NPs/C catalyst. The great ORR performance of the as-made catalyst is due to its unique urchin-like morphology with the dominant (111) facets and the synergistic and electronic effects of alloying Ni and Pt. This study not only provides a robust ORR electrocatalyst, but also opens a facile but effective route for fabricating 3D Pt-based binary and ternary alloy catalysts.

???displayArticle.pubmedLink??? 35822501
???displayArticle.link??? Dalton Trans