Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-50640
Langmuir 2021 Dec 21;3750:14767-14776. doi: 10.1021/acs.langmuir.1c02874.
Show Gene links Show Anatomy links

Cobalt Carbonate-Coated Nitrogen-Doped Carbon Nanotubes with a Sea-Cucumber Morphology for Electrocatalytic Water Splitting.

Wang P , Zhang F , Wu C , Wang J , Han B , Liu Z .


???displayArticle.abstract???
Herein, we report CoCO3-coated nitrogen-doped carbon nanotubes (NCNTs) with a sea cucumber-like morphology for water splitting. The sample with a CoCO3 content of 26.8 wt % (CoCO3/NCNT-1) exhibits excellent performance for the hydrogen evolution reaction in 1.0 M KOH electrolyte with an overpotential of 58 mV to reach 10 mA cm-2, better than the most non-noble metal catalysts reported; meanwhile, it exhibits superior electrocatalytic activity for the oxygen evolution reaction. The excellent performance of the catalyst is attributed to the nanotip effect caused by the sea-cucumber-like morphology. Notably, CoCO3/NCNT-1 can attain turnover frequencies of 2.7 s-1 at an overpotential of 50 mV, higher than that of Pt/C (1.5 s-1). A cell constructed using CoCO3/NCNT-1 as the catalyst of the electrode pair needs a low cell voltage of 1.54 V at 10 mA cm-2, superior to most reported cells. In addition, CoCO3/NCNT-1 can maintain 10 mA cm-2 for overall water splitting for 100 h without activity loss.

???displayArticle.pubmedLink??? 34882418
???displayArticle.link??? Langmuir