Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-50151
Genome Biol Evol 2011 Jan 01;3:284-94. doi: 10.1093/gbe/evr020.
Show Gene links Show Anatomy links

Stanniocalcin has deep evolutionary roots in eukaryotes.

Roch GJ , Sherwood NM .


???displayArticle.abstract???
Vertebrates have a large glycoprotein hormone, stanniocalcin, which originally was shown to inhibit calcium uptake from the environment in teleost fish gills. Later, humans, other mammals, and teleost fish were shown to have two forms of stanniocalcin (STC1 and STC2) that were widely distributed in many tissues. STC1 is associated with calcium and phosphate homeostasis and STC2 with phosphate, but their receptors and signaling pathways have not been elucidated. We undertook a phylogenetic investigation of stanniocalcin beyond the vertebrates using a combination of BLAST and HMMER homology searches in protein, genomic, and expressed sequence tag databases. We identified novel STC homologs in a diverse array of multicellular and unicellular organisms. Within the eukaryotes, almost all major taxonomic groups except plants and algae have STC homologs, although some groups like echinoderms and arthropods lack STC genes. The critical structural feature for recognition of stanniocalcins was the conserved pattern of ten cysteines, even though the amino acid sequence identity was low. Signal peptides in STC sequences suggest they are secreted from the cell of synthesis. The role of glycosylation signals and additional cysteines is not yet clear, although the 11th cysteine, if present, has been shown to form homodimers in some vertebrates. We predict that large secreted stanniocalcin homologs appeared in evolution as early as single-celled eukaryotes. Stanniocalcin's tertiary structure with five disulfide bonds and its primary structure with modest amino acid conservation currently lack an established receptor-signaling system, although we suggest possible alternatives.

???displayArticle.pubmedLink??? 21402861
???displayArticle.pmcLink??? PMC5654410
???displayArticle.link??? Genome Biol Evol




???attribute.lit??? ???displayArticles.show???
References [+] :
Abascal, ProtTest: selection of best-fit models of protein evolution. 2005, Pubmed