Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-49530
Sci Rep 2020 Oct 22;101:18079. doi: 10.1038/s41598-020-75117-2.
Show Gene links Show Anatomy links

Trophic downgrading reduces spatial variability on rocky reefs.

Edwards MS , Konar B .


???displayArticle.abstract???
Trophic downgrading in coastal waters has occurred globally during recent decades. On temperate rocky reefs, this has resulted in widespread kelp deforestation and the formation of sea urchin barrens. We hypothesize that the intact kelp forest communities are more spatially variable than the downgraded urchin barren communities, and that these differences are greatest at small spatial scales where the influence of competitive and trophic interactions is strongest. To address this, benthic community surveys were done in kelp forests and urchin barrens at nine islands spanning 1230 km of the Aleutian Archipelago where the loss of predatory sea otters has resulted in the trophic downgrading of the region's kelp forests. We found more species and greater total spatial variation in community composition within the kelp forests than in the urchin barrens. Further, the kelp forest communities were most variable at small spatial scales (within each forest) and least variable at large spatial scales (among forests on different islands), while the urchin barren communities followed the opposite pattern. This trend was consistent for different trophic guilds (primary producers, grazers, filter feeders, predators). Together, this suggests that Aleutian kelp forests create variable habitats within their boundaries, but that the communities within these forests are generally similar across the archipelago. In contrast, urchin barrens exhibit relatively low variability within their boundaries, but these communities vary substantially among different barrens across the archipelago. We propose this represents a shift from small-scale biological control to large-scale oceanographic control of these communities.

???displayArticle.pubmedLink??? 33093542
???displayArticle.pmcLink??? PMC7581756
???displayArticle.link??? Sci Rep




???attribute.lit??? ???displayArticles.show???
References [+] :
Bauer, Lion (Panthera leo) populations are declining rapidly across Africa, except in intensively managed areas. 2015, Pubmed