ECB-ART-48534
Elife
2020 Mar 09;9. doi: 10.7554/eLife.50532.
Show Gene links
Show Anatomy links
Sperm chemotaxis is driven by the slope of the chemoattractant concentration field.
Ramírez-Gómez HV
,
Jimenez Sabinina V
,
Velázquez Pérez M
,
Beltran C
,
Carneiro J
,
Wood CD
,
Tuval I
,
Darszon A
,
Guerrero A
.
???displayArticle.abstract???
Spermatozoa of marine invertebrates are attracted to their conspecific female gamete by diffusive molecules, called chemoattractants, released from the egg investments in a process known as chemotaxis. The information from the egg chemoattractant concentration field is decoded into intracellular Ca2+ concentration ([Ca2+]i) changes that regulate the internal motors that shape the flagellum as it beats. By studying sea urchin species-specific differences in sperm chemoattractant-receptor characteristics we show that receptor density constrains the steepness of the chemoattractant concentration gradient detectable by spermatozoa. Through analyzing different chemoattractant gradient forms, we demonstrate for the first time that Strongylocentrotus purpuratus sperm are chemotactic and this response is consistent with frequency entrainment of two coupled physiological oscillators: i) the stimulus function and ii) the [Ca2+]i changes. We demonstrate that the slope of the chemoattractant gradients provides the coupling force between both oscillators, arising as a fundamental requirement for sperm chemotaxis.
???displayArticle.pubmedLink??? 32149603
???displayArticle.pmcLink??? PMC7093112
???displayArticle.link??? Elife
???displayArticle.grants??? [+]
Fronteras 71 Consejo Nacional de Ciencia y Tecnología, Ciencia basica 252213 y 255914 Consejo Nacional de Ciencia y Tecnología, IA202417 Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México, IN205516 Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México, IN206016 Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México, IN215519 Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México, IN112514 Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México, FIS2013-48444-C2-1-P Ministerio de Economía y Competitividad, FIS2016-77692-C2-1- P Ministerio de Economía y Competitividad, JSPS/236, ID no. S16172 Japan Society for the Promotion of Science , Fronteras 71,Ciencia basica 252213 y 255914 Consejo Nacional de Ciencia y Tecnología, IA202417,IN205516,IN206016,IN215519 and IN112514 Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México, FIS2013-48444-C2-1-P,FIS2016-77692-C2-1- P Ministerio de Economía y Competitividad
Genes referenced: LOC100887844
???attribute.lit??? ???displayArticles.show???
References [+] :
Aguilera,
What is the core oscillator in the speract-activated pathway of the Strongylocentrotus purpuratus sperm flagellum?
2012, Pubmed,
Echinobase
Aguilera, What is the core oscillator in the speract-activated pathway of the Strongylocentrotus purpuratus sperm flagellum? 2012, Pubmed , Echinobase
Alvarez, The rate of change in Ca(2+) concentration controls sperm chemotaxis. 2012, Pubmed , Echinobase
Amselem, Control parameter description of eukaryotic chemotaxis. 2012, Pubmed
Beltrán, Zn(2+) induces hyperpolarization by activation of a K(+) channel and increases intracellular Ca(2+) and pH in sea urchin spermatozoa. 2014, Pubmed , Echinobase
Berg, Physics of chemoreception. 1977, Pubmed
Böhmer, Ca2+ spikes in the flagellum control chemotactic behavior of sperm. 2005, Pubmed , Echinobase
Brokaw, Calcium-induced asymmetrical beating of triton-demembranated sea urchin sperm flagella. 1979, Pubmed , Echinobase
Cook, Sperm chemotaxis: egg peptides control cytosolic calcium to regulate flagellar responses. 1994, Pubmed , Echinobase
Darszon, Sperm-activating peptides in the regulation of ion fluxes, signal transduction and motility. 2008, Pubmed , Echinobase
Espinal, Discrete dynamics model for the speract-activated Ca2+ signaling network relevant to sperm motility. 2011, Pubmed , Echinobase
Friedrich, Chemotaxis of sperm cells. 2007, Pubmed
Friedrich, Search along persistent random walks. 2008, Pubmed
Friedrich, Steering chiral swimmers along noisy helical paths. 2009, Pubmed
Garcés, Automatic detection and measurement of viral replication compartments by ellipse adjustment. 2016, Pubmed
Guerrero, Tuning sperm chemotaxis. 2010, Pubmed , Echinobase
Guerrero, Niflumic acid disrupts marine spermatozoan chemotaxis without impairing the spatiotemporal detection of chemoattractant gradients. 2013, Pubmed , Echinobase
Guerrero, Tuning sperm chemotaxis by calcium burst timing. 2010, Pubmed , Echinobase
Hansbrough, Speract. Purification and characterization of a peptide associated with eggs that activates spermatozoa. 1981, Pubmed , Echinobase
Hussain, Individual female differences in chemoattractant production change the scale of sea urchin gamete interactions. 2017, Pubmed , Echinobase
Jikeli, Sperm navigation along helical paths in 3D chemoattractant landscapes. 2015, Pubmed , Echinobase
Kashikar, Temporal sampling, resetting, and adaptation orchestrate gradient sensing in sperm. 2012, Pubmed , Echinobase
Kaupp, 100 years of sperm chemotaxis. 2012, Pubmed
Kaupp, The signal flow and motor response controling chemotaxis of sea urchin sperm. 2003, Pubmed , Echinobase
Kromer, Decision making improves sperm chemotaxis in the presence of noise. 2018, Pubmed , Echinobase
Lazova, Response rescaling in bacterial chemotaxis. 2011, Pubmed
Lillie, THE MECHANISM OF FERTILIZATION. 1913, Pubmed
Mead, The effects of hydrodynamic shear stress on fertilization and early development of the purple sea urchin Strongylocentrotus purpuratus. 1995, Pubmed , Echinobase
Meijering, Methods for cell and particle tracking. 2012, Pubmed
Mizuno, Calaxin establishes basal body orientation and coordinates movement of monocilia in sea urchin embryos. 2017, Pubmed , Echinobase
Nishigaki, Real-time measurements of the interactions between fluorescent speract and its sperm receptor. 2000, Pubmed , Echinobase
Nishigaki, Time-resolved sperm responses to an egg peptide measured by stopped-flow fluorometry. 2001, Pubmed , Echinobase
Nishigaki, A sea urchin egg jelly peptide induces a cGMP-mediated decrease in sperm intracellular Ca(2+) before its increase. 2004, Pubmed , Echinobase
Nosrati, Two-dimensional slither swimming of sperm within a micrometre of a surface. 2015, Pubmed
Pichlo, High density and ligand affinity confer ultrasensitive signal detection by a guanylyl cyclase chemoreceptor. 2014, Pubmed , Echinobase
Riedel, A self-organized vortex array of hydrodynamically entrained sperm cells. 2005, Pubmed , Echinobase
Riffell, Sex and flow: the consequences of fluid shear for sperm-egg interactions. 2007, Pubmed
Schneider, NIH Image to ImageJ: 25 years of image analysis. 2012, Pubmed
Shiba, Ca2+ bursts occur around a local minimal concentration of attractant and trigger sperm chemotactic response. 2008, Pubmed
Solzin, Revisiting the role of H+ in chemotactic signaling of sperm. 2004, Pubmed , Echinobase
Strünker, At the physical limit - chemosensation in sperm. 2015, Pubmed , Echinobase
Strünker, A K+-selective cGMP-gated ion channel controls chemosensation of sperm. 2006, Pubmed , Echinobase
Suzuki, Structure, function and biosynthesis of sperm-activating peptides and fucose sulfate glycoconjugate in the extracellular coat of sea urchin eggs. 1995, Pubmed , Echinobase
Tatsu, A caged sperm-activating peptide that has a photocleavable protecting group on the backbone amide. 2002, Pubmed , Echinobase
Vergassola, 'Infotaxis' as a strategy for searching without gradients. 2007, Pubmed
Wood, Altering the speract-induced ion permeability changes that generate flagellar Ca2+ spikes regulates their kinetics and sea urchin sperm motility. 2007, Pubmed , Echinobase
Wood, Speract induces calcium oscillations in the sperm tail. 2003, Pubmed , Echinobase
Wood, Real-time analysis of the role of Ca(2+) in flagellar movement and motility in single sea urchin sperm. 2005, Pubmed , Echinobase
Yoshida, Sperm chemotaxis and regulation of flagellar movement by Ca2+. 2011, Pubmed
Zimmer, Sperm chemotaxis, fluid shear, and the evolution of sexual reproduction. 2011, Pubmed