Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-48466
Am J Physiol 1999 Aug 01;2772:C216-24. doi: 10.1152/ajpcell.1999.277.2.C216.
Show Gene links Show Anatomy links

Regulation of the epithelial Na(+) channel by intracellular Na(+).

Awayda MS .


???displayArticle.abstract???
The hypothesis that the intracellular Na(+) concentration ([Na(+)](i)) is a regulator of the epithelial Na(+) channel (ENaC) was tested with the Xenopus oocyte expression system by utilizing a dual-electrode voltage clamp. [Na(+)](i) averaged 48.1 +/- 2.2 meq (n = 27) and was estimated from the amiloride-sensitive reversal potential. [Na(+)](i) was increased by direct injection of 27.6 nl of 0.25 or 0.5 M Na(2)SO(4). Within minutes of injection, [Na(+)](i) stabilized and remained elevated at 97.8 +/- 6.5 meq (n = 9) and 64. 9 +/- 4.4 (n = 5) meq 30 min after the initial injection of 0.5 and 0.25 M Na(2)SO(4), respectively. This increase of [Na(+)](i) caused a biphasic inhibition of ENaC currents. In oocytes injected with 0.5 M Na(2)SO(4) (n = 9), a rapid decrease of inward amiloride-sensitive slope conductance (g(Na)) to 0.681 +/- 0.030 of control within the first 3 min and a secondary, slower decrease to 0.304 +/- 0.043 of control at 30 min were observed. Similar but smaller inhibitions were also observed with the injection of 0.25 M Na(2)SO(4). Injection of isotonic K(2)SO(4) (70 mM) or isotonic K(2)SO(4) made hypertonic with sucrose (70 mM K(2)SO(4)-1.2 M sucrose) was without effect. Injection of a 0.5 M concentration of either K(2)SO(4), N-methyl-D-glucamine (NMDG) sulfate, or 0.75 M NMDG gluconate resulted in a much smaller initial inhibition (<14%) and little or no secondary decrease. Thus increases of [Na(+)](i) have multiple specific inhibitory effects on ENaC that can be temporally separated into a rapid phase that was complete within 2-3 min and a delayed slow phase that was observed between 5 and 30 min.

???displayArticle.pubmedLink??? 10444397
???displayArticle.link??? Am J Physiol