Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-47835
Environ Toxicol Chem 2002 Oct 01;2110:2242-51.
Show Gene links Show Anatomy links

Oil effect in freshly spiked marine sediment on Vibrio fischeri, Corophium volutator, and Echinocardium cordatum.

Brils JM , Huwer SL , Kater BJ , Schout PG , Harmsen J , Delvigne GA , Scholten MC .


???displayArticle.abstract???
The purpose of this study was to provide data to be used in The Netherlands for development of ecotoxicologically based quality criteria for oil-contaminated sediments and dredged material. In addition, the relation of toxicity to specific oil boiling-point fraction ranges was explored. Natural marine sediment, with a moisture, organic carbon, and silt content of approximately 80, 1.8, and 33% of the dry weight, respectively, was artificially spiked using a spiking method developed in this project. Aliquots of one part of the sediment were spiked to several concentrations of Gulf distillate marine grade A (DMA) gasoil (containing 64% C10-19) and aliquots of the other part to several concentrations of Gulf high viscosity grade 46 (HV46) hydraulic oil (containing 99.2% C19-40). Thus, for each individual oil type, a concentration series was created. Vibrio fischeri (endpoint: bioluminescence inhibition), Corophium volutator (endpoint:mortality), and Echinocardium cordatum (endpoint:mortality) were exposed to these spiked sediments for 10 min, 10 d and 14 d, respectively. Based on the test results, the effective concentration on 50% of the test animals was statistically estimated. For DMA gasoil and HV46 hydraulic oil, respectively, the effective concentrations were 43.7 and 2,682 mg/kg dry weight for V. fischeri, 100 and 9,138 mg/kg dry weight for C. volutator, 190, and 1064 mg/kg dry weight for E. cordatum. This study shows that the toxicity is strongly correlated with the lower boiling-point fractions and especially to those within the C10-C19 range.

???displayArticle.pubmedLink??? 12371504