Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-47576
Exp Biol Med (Maywood) 2002 Jan 01;2271:36-44. doi: 10.1177/153537020222700107.
Show Gene links Show Anatomy links

Differential mechanisms of Ca(2+) release from vascular smooth muscle cell microsomes.

Yusufi AN , Cheng J , Thompson MA , Burnett JC , Grande JP .


???displayArticle.abstract???
The release of Ca(2+) from intracellular stores is a fundamental element of signaling pathways involved in regulation of vascular tone, proliferation, apoptosis, and gene expression. Studies of sea urchin eggs have led to the identification of three functionally distinct Ca(2+) signaling pathways triggered by IP3, cADPR, and NAADP. The coexistence and functional relevance of these distinct intracellular Ca(2+) release systems has only been described in a few mammalian cell types. The purpose of this study was to determine whether the IP3, cADPR, and NAADP Ca(2+) release systems coexist in smooth muscle cells (SMC) and to determine the specificity of these intracellular Ca(2+) release pathways. Microsomes were prepared from rat aortic SMC (VSMC) and were loaded with 45Ca(2+). cADPR, NAADP, and IP3 induced Ca(2+) release from VSMC microsomes in a dose-dependent fashion. Heparin blocked only IP3-mediated Ca(2+) release, whereas the ryanodine channel inhibitors 8-Br-cADPR and ruthenium red blocked only cADPR-induced Ca(2+) release. Nifedipine, an L-type Ca(2+) channel blocker, inhibited NAADP elicited Ca(2+) release, but had no effect on IP3- or cADPR-mediated Ca(2+) release. An increase in pH from 7.2 to 8.2 inhibited cADPR-mediated Ca(2+) release, but had no effect on IP3- or NAADP-induced Ca(2+) release. By RT-PCR, VSMC expressed ryanodine receptor types 1, 2, and 3. Ca(2+)-dependent binding of [3H]-ryanodine to VSMC microsomes was enhanced by the ryanodine receptor agonists 4-chloro-methyl-phenol (CMP) and caffeine, but was inhibited by ruthenium red and cADPR. We conclude that VSMC possess at least three functionally distinct pathways that promote intracellular Ca(2+) release. IP3-, cADPR-, and NAADP-induced intracellular Ca(2+) release may play a critical role in the maladaptive responses of VSMC to environmental stimuli that are characteristically associated with hypertension and/or atherogenesis.

???displayArticle.pubmedLink??? 11788782
???displayArticle.link??? Exp Biol Med (Maywood)
???displayArticle.grants??? [+]

Genes referenced: LOC100887844 LOC115919080 LOC115919910