Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-45581
J Oleo Sci 2017 Jul 01;667:761-769. doi: 10.5650/jos.ess17038.
Show Gene links Show Anatomy links

Dietary Starfish Oil Prevents Hepatic Steatosis and Hyperlipidemia in C57BL/6N Mice Fed High-fat Diet.

Beppu F , Li H , Yoshinaga K , Nagai T , Yoshinda A , Kubo A , Kanda J , Gotoh N .


???displayArticle.abstract???
Starfish oil (SO) is characterized by functional lipids, including n-3 polyunsaturated fatty acid (both in the form of triacylglycerol and in the form of phospholipid), and carotenoids, which may exert beneficial effects on metabolic disorders in obesity-associated diseases. In the present study, the effect of SO on dysregulation of lipid metabolism was examined using C57BL/6N mice treated with high-fat (HF) diet. Mice were fed HF, HF with 2% SO, or HF with 5% SO diet for 8 weeks. Weight gain, blood glucose, serum and hepatic lipid contents, and hepatic fatty acid composition were measured. Fatty acid β-oxidation activity was monitored by measuring the catabolic rate of 13C-labeled fatty acid, assessed as 13CO2/12CO2 ratio using isotope ratio mass spectrometry (IR-MS). Although there were no differences in body weight or white adipose tissue weight among the test groups, dietary SO reduced blood glucose, and dose-dependently improved hyperlipidemia and decreased hepatic lipid accumulation. Analysis of hepatic fatty acid composition revealed a significant decrease in the ratio of monounsaturated fatty acid to saturated fatty acid, which is attributed to stearoyl-CoA desaturase activity. IR-MS analysis suggested that β-oxidation activity was enhanced in the mice treated with 5% SO. These results demonstrate that dietary SO improves lipid metabolism measures in HF diet-induced obese mice, suggesting that SO holds promise as an agent for the prevention and treatment of lipid metabolism disorders in the liver.

???displayArticle.pubmedLink??? 28626141
???displayArticle.link??? J Oleo Sci


Genes referenced: fat4