Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-45179
Mater Sci Eng C Mater Biol Appl 2017 Apr 01;73:579-584. doi: 10.1016/j.msec.2016.12.041.
Show Gene links Show Anatomy links

Adsorption and enzyme activity of asparaginase at lipid Langmuir and Langmuir-Blodgett films.

da Rocha Junior C , Caseli L .


???displayArticle.abstract???
In this present work, the surface activity of the enzyme asparaginase was investigated at the air-water interface, presenting surface activity in high ionic strengths. Asparaginase was incorporated in Langmuir monolayers of the phospholipid dipalmitoylphosphatidylcholine (DPPC), forming a mixed film, which was characterized with surface pressure-area isotherms, surface potential-area isotherms, polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). The adsorption of the enzyme at the air-water interface condensed the lipid monolayer and increased the film compressibility at high surface pressures. Amide bands in the PM-IRRAS spectra were identified, with the CN and CO dipole moments lying parallel to monolayer plane, revealing the structuring of the enzyme into α-helices and β-sheets. The floating monolayers were transferred to solid supports as Langmuir-Blodgett (LB) films and characterized with fluorescence spectroscopy and atomic force microscopy. Catalytic activities of the films were measured and compared to the homogenous medium. The enzyme accommodated in the LB films preserved more than 78% of the enzyme activity after 30days, in contrast for the homogeneous medium, which preserved less than 13%. The method presented in this work not only allows for an enhanced catalytic activity, but also can help explain why certain film architectures exhibit better performance.

???displayArticle.pubmedLink??? 28183647
???displayArticle.link??? Mater Sci Eng C Mater Biol Appl


Genes referenced: LOC589437