ECB-ART-44499
Open Biol
2016 Feb 01;62:150224. doi: 10.1098/rsob.150224.
Show Gene links
Show Anatomy links
Transcriptomic identification of starfish neuropeptide precursors yields new insights into neuropeptide evolution.
Semmens DC
,
Mirabeau O
,
Moghul I
,
Pancholi MR
,
Wurm Y
,
Elphick MR
.
???displayArticle.abstract???
Neuropeptides are evolutionarily ancient mediators of neuronal signalling in nervous systems. With recent advances in genomics/transcriptomics, an increasingly wide range of species has become accessible for molecular analysis. The deuterostomian invertebrates are of particular interest in this regard because they occupy an ''intermediate'' position in animal phylogeny, bridging the gap between the well-studied model protostomian invertebrates (e.g. Drosophila melanogaster, Caenorhabditis elegans) and the vertebrates. Here we have identified 40 neuropeptide precursors in the starfish Asterias rubens, a deuterostomian invertebrate from the phylum Echinodermata. Importantly, these include kisspeptin-type and melanin-concentrating hormone-type precursors, which are the first to be discovered in a non-chordate species. Starfish tachykinin-type, somatostatin-type, pigment-dispersing factor-type and corticotropin-releasing hormone-type precursors are the first to be discovered in the echinoderm/ambulacrarian clade of the animal kingdom. Other precursors identified include vasopressin/oxytocin-type, gonadotropin-releasing hormone-type, thyrotropin-releasing hormone-type, calcitonin-type, cholecystokinin/gastrin-type, orexin-type, luqin-type, pedal peptide/orcokinin-type, glycoprotein hormone-type, bursicon-type, relaxin-type and insulin-like growth factor-type precursors. This is the most comprehensive identification of neuropeptide precursor proteins in an echinoderm to date, yielding new insights into the evolution of neuropeptide signalling systems. Furthermore, these data provide a basis for experimental analysis of neuropeptide function in the unique context of the decentralized, pentaradial echinoderm bauplan.
???displayArticle.pubmedLink??? 26865025
???displayArticle.pmcLink??? PMC4772807
???displayArticle.link??? Open Biol
Species referenced: Echinodermata
Genes referenced: gpa2 gpb5 LOC100887844 LOC105439578 LOC105439585 LOC105444275 npas1
???attribute.lit??? ???displayArticles.show???
![]() |
Figure 1. Animal phylogeny. Phylogenetic diagram showing the position of the phylum Echinodermata (shown in red; e.g. starfish) in the deuterostomian branch of the animal kingdom. The Bilateria comprise two super-phylaâthe deuterostomes and the protostomes. The deuterostomes comprise the chordates (vertebrates, urochordates and cephalochordates) and the ambulacrarians (hemichordates and echinoderms). The protostomes comprise the lophotrochozoans (e.g. molluscs and annelids) and the ecdysozoans (e.g. arthropods and nematodes). The Cnidaria (e.g. sea anemones) are basal to the Bilateria. Images of representative animals from each phylum were obtained from http://phylopic.org or were created by the authors or by M. Zandawala (Stockholm University). |
![]() |
Figure 2. Precursors of neuropeptides in A. rubens that provide novel insights into neuropeptide evolution at the superphylum/phylum level. Predicted signal peptides are shown in blue, putative neuropeptides are shown in red (with cysteine (C) residues underlined), C-terminal glycine (G) residues that are putative substrates for amidation are shown in orange and putative dibasic/tribasic cleavage sites are shown in green. |
![]() |
Figure 3. Alignment of ArKP1 and ArKP2 with other kisspeptin (KP)-type peptides. Accession numbers for the corresponding precursor proteins are: Arub, A. rubens KP-type precursor [GenBank: KT601705]; Spur, S. purpuratus KP-type precursor [GI:374768013]; Skow, S. kowalevskii KP-type precursor [GI:187123982]; Bflo1, B. floridae KP-type precursor 1 [GI:260826607]; Bflo2, B. floridae KP-type precursor 2 [GI:260827077]; Bflo3, B. floridae KP-type precursor 3 [GI:260826605]; Bflo4, B. floridae KP-type precursor 4 [GI:260793233]; Hsap, Homo sapiens KiSS-1 metastasis-suppressor precursor [GI:21950713]. |
![]() |
Figure 4. Alignment of ArMCH with other melanin-concentration hormone (MCH)-type peptides. Accession numbers for the corresponding precursor proteins are: Arub, A. rubens MCH-type precursor [GenBank: KT601706]; Spur, S. purpuratus MCH-type precursor [GI:109402760]; Skow, S. kowalevskii MCH-type precursor [GI:187231810]; Trub, Takifugu rubripes MCH precursor [GI:410918650]; Hsap, H. sapiens MCH precursor [GI:187445]. |
![]() |
Figure 5. Alignment of ArTK1 and ArTK2 with other tachykinin (TK)-type peptides. Accession numbers for the corresponding precursor proteins are: Arub, A. rubens TK-type precursor [GenBank: KT601707]; Spur, S. purpuratus TK-type precursor [GI:109402899]; Cint, C. intestinalis TK-type precursor [GI:74136064]; Hsap_SubP, H. sapiens β-prepro TK precursor [GI:29482]; Hsap_NKB, H. sapiens neurokinin-β precursor [GI:48146502]; Hsap_NKA, H. sapiens TK4 precursor [GI:117938255]; Ctel, Capitella teleta [GI:161289578]; Lgig1, Lottia gigantea TK-type precursor 1 [GI:676441944]; Lgig2, L. gigantea TK-type precursor 2 [GI:163525452]; Dmel, D. melanogaster TK precursor [GI:442618676]. |
![]() |
Figure 6. Alignment of ArSS with other somatostatin (SS)-type peptides and AST-C-type peptides. Accession numbers for the corresponding precursor proteins are: Arub, A. rubens SS-type precursor [GenBank: KT601708]; Spur, S. purpuratus SS-type precursor [GI:390344260]; Bflo, B. floridae SS-type precursor [JGI:72051]; Hsap_SS, H. sapiens SS precursor [GI:21619155]; Hsap_CORT, H. sapiens cortistatin (CORT) precursor [GI:110645815]; Ctel, C. teleta AST-C-type precursor [GI:161295377]; Lgig, L. gigantea AST-C-type precursor [GI:163505903]; Dmel_AstC, D. melanogaster AST-C-type precursor [GI:665407583]; Dmel_AstCC, D. melanogaster AST-CC-type precursor [GI:665407585]. |
![]() |
Figure 7. Alignment of ArPDF1 and ArPDF2 with other pigment-dispersing factor (PDF)-type peptides. Accession numbers for the corresponding precursor proteins are: Arub, A. rubens PDF-type precursor [GenBank: KT601709]; Spur, S. purpuratus PDF-type precursor [GI:115899431]; Skow, S. kowalevskii PDF-type precursor [GI:187067819]; Ctel, C. teleta PDF-type precursor [JGI:204689]; Lgig, L. gigantea cerebrin precursor [GI:676458325]; Dmel, D. melanogaster PDF precursor [GI:281362639]; Cele, C. elegans PDF precursor [GI:25149644]. |
![]() |
Figure 8. Alignment of ArCRH with other corticotropin-releasing hormone (CRH)-type peptides. Accession numbers for the corresponding precursor proteins are: Arub, A. rubens CRH-type precursor [GenBank: KT601710]; Skow1, S. kowalevskii CRH-type precursor 1 [GI:281433636]; Skow2, S. kowalevskii CRH-type precursor 2 [GI:281433636]; Bflo, B. floridae CRH-type precursor [GI:260786674]; Hsap_CRH, H. sapiens CRH precursor [GI:30583744]; Hsap_UCN, H. sapiens urocortin (UCN) precursor [GI:49457481]; Hsap_UCN2, H. sapiens stresscopin-related protein precursor [GI:14029393]; Hsap_UCN3, H. sapiens stresscopin precursor [GI:15026913]; Ctel1, C. teleta CRH-type precursor 1 [GI:161303031]; Ctel2, C. teleta CRH-type precursor 2 [JGI:190906]; Ctel3, C. teleta CRH-type precursor 3 [JGI:190906]; Ctel4, C. teleta CRH-type precursor 4 [JGI:194553]; Lgig1, L. gigantea CRH-type precursor 1 [GI:676493124]; Lgig2, L. gigantea CRH-type precursor 2 [GI:163524672]. |
![]() |
Figure 9. Precursors of neuropeptides in A. rubens that are novel echinoderm representatives of bilaterian neuropeptide families. Predicted signal peptides are shown in blue, putative neuropeptides are shown in red (with cysteine (C) residues underlined), C-terminal glycine (G) residues that are putative substrates for amidation are shown in orange and putative dibasic cleavage sites are shown in green. For the (a) asterotocin and (b) NGFFYamide precursors, the C-terminal neurophysin domain (with the characteristic 14 cysteine (c) residues underlined) is shown in purple. |
![]() |
Figure 10. Alignment of asterotocin with other vasopressin/oxytocin (VP/OT)-type peptides. Accession numbers for the corresponding precursor proteins are: Arub, A. rubens asterotocin precursor [GenBank: KT601711], Spur, S. purpuratus echinotocin precursor [GI:390337108]; Skow, S. kowalevskii VP/OT-type precursor [GI:187155721]; Bflo, B. floridae VP/OT-type precursor [GI:260828088]; Hsap_VP, H. sapiens VP precursor [GI:340298]; Hsap_OT, H. sapiens OT precursor [GI:189410]; Ctel, C. teleta VP/OT-type precursor [JGI:173251]; Lgig, L. gigantea VP/OT-type precursor [JGI:53893]; Dpul, Daphnia pulex VP/OT-type precursor [JGI:59567]. |
![]() |
Figure 11. Alignment of A. rubens GnRH-type peptides/precursors with other gonadotropin-releasing hormone (GnRH)-type peptides/precursors. (a) Alignment of GnRH-type peptides. Accession numbers for the corresponding precursor proteins are: Arub, A. rubens GnRH-type precursor 1 [GenBank: KT601712]; Spur, S. purpuratus GnRH-type precursor 1 [GI:390361802]; Skow, S. kowalevskii GnRH-type precursor [GI:585702722]; Bflo, B. floridae GnRH-type precursor [GI:568818760]; Hsap1, H. sapiens GnRH precursor 1 [GI:133908609]; Hsap2, H. sapiens GnRH precursor 2 [GI:109731929]; Ctel, C. teleta GnRH-type precursor [GI:161294493]; Acal, A. californica GnRH-type precursor [GI:325296898]; Dmel_CORZ, D. melanogaster corazonin (CORZ) precursor [GI:386765761]; Dmel_AKH, D. melanogaster adipokinetic hormone (AKH) precursor [GI:281365621]. (b) Alignment of GnRH-type precursors. Accession numbers for the corresponding precursor proteins are: Arub_GnRH1P, A. rubens GnRH-type precursor 1 [GenBank: KT601712]; Spur_GnRH1P, S. purpuratus GnRH-type precursor 1 [GI:390361802]; Arub_GnRH2P, A. rubens GnRH-type precursor 2 [GenBank: KT601713]; Spur_GnRH2P, S. purpuratus GnRH-type precursor 2 [GI:109403263]. |
![]() |
Figure 12. Alignment of ArTRH with other thyrotropin-releasing hormone (TRH)-type peptides. Accession numbers for the corresponding precursor proteins are: Arub, A. rubens TRH-type precursor [GenBank: KT601714]; Spur, S. purpuratus TRH-type precursor [GI:109402869]; Skow, S. kowalevskii TRH-type precursor [GI:187216047]; Bflo, B. floridae TRH-type precursor [GI:260784028]; Hsap, H. sapiens TRH precursor [GI:485464565]; Pdum, P. dumerilii EFLGamide precursor [GI:332167915]. |
![]() |
Figure 13. Alignment of ArCT with other calcitonin (CT)-type peptides. Accession numbers for the corresponding precursor proteins are: Arub, A. rubens CT-type precursor [GenBank: KT601715]; Spur, S. purpuratus CT-type precursor [GI:115767208]; Skow, S. kowalevskii CT-type precursor [GI:187217193]; Bflo1, B. floridae CT-type precursor 1 [GI:260826569]; Bflo2, B. floridae CT-type precursor 2 [GI:260826567]; Bflo3, B. floridae CT-type precursor 3 [GI:260826573]; Bflo4, B. floridae CT-type precursor 4 [GI:260812099]; Hsap_Calc, H. sapiens CT precursor [GI:179819]; Hsap_CGRP1, H. sapiens CT gene-related peptide (CGRP) 1 precursor [GI:269784661]; Hsap_IAPP, H. sapiens islet amyloid polypeptide (IAPP) precursor [GI:109255169]; Hsap_ADML, H. sapiens adrenomedullin precursor [GI:675022745]; Hsap_ADM2, H. sapiens adrenomedullin 2 precursor [GI:41016725]; Ctel, C. teleta CT-type precursor [GI: 161220966]; Lgig1, L. gigantea CT-type precursor 1 [GI:163526287]; Lgig2, L. gigantea CT-type precursor 2 [GI:676481265]. |
![]() |
Figure 14. Alignment of ArCCK1 and ArCCK2 with other cholecystokinin (CCK)-type peptides. Accession numbers for the corresponding precursor proteins are: Arub, A. rubens CCK-type precursor [GenBank: KT601716]; Spur, S. purpuratus CCK-type precursor [GI:390355380]; Skow1, S. kowalevskii CCK-type precursor 1 [GI:585688033]; Skow2, S. kowalevskii CCK-type precursor 2 [GI:187061456]; Cint, C. intestinalis cionin precursor [GI:10799472]; Hsap_CCK-8, H. sapiens CCK precursor [GI:30582820]; Hsap_Gast-6, H. sapiens gastrin precursor [GI:47481291]; Ctel, C. teleta CCK-type precursor [GI:161296032]; Lgig1, L. gigantea CCK-type precursor 1 [GI:161296032]; Lgig2, L. gigantea CCK-type precursor 2 [GI:52414496]; Dmel_SK, D. melanogaster sulfakinin (SK) precursor [GI:386765036]. |
![]() |
Figure 15. Alignment of ArOX1 and ArOX2 with other orexin (OX)-type peptides. Accession numbers for the corresponding precursor proteins are: Arub1, A. rubens OX-type precursor 1 [GenBank: KT601717]; Arub2, A. rubens OX-type precursor 2 [GenBank: KT601718]; Spur1, S. purpuratus OX-type precursor 1 [GI:346420309]; Spur2, S. purpuratus OX-type precursor 2 [GI:346419879]; Skow, S. kowalevskii OX-type precursor [GI:585662697]; Bflo1, B. floridae OX-type precursor 1 [GI:260807454]; Bflo2, B. floridae OX-type precursor 2 [GI:260780718]; Hsap_OX, H. sapiens OX precursor [GI:4557634]. |
![]() |
Figure 16. Alignment of ArLQ with other luqin (LQ)-type peptides and alignment of a conserved C-terminal domain of LQ-type precursor proteins. Accession numbers for the corresponding precursor proteins are: Arub, A. rubens LQ-type precursor [GenBank: KT601719]; Spur, S. purpuratus LQ-type precursor [GI:390331828]; Skow, S. kowalevskii LQ-type precursor [GI:585716464]; Ctel, C. teleta LQ-type precursor [GI:161280144]; Lgig, L. gigantea LQ-type precursor [GI:163510328]; Dpul, D. pulex LQ-type precursor [JGI:251691]; Dvir, Drosophila virilis LQ-type precursor [GI: 968114152]. |
![]() |
Figure 17. Alignment of representative A. rubens PP/orcokinin-type peptide with other PP/orcokinin-type peptides. Accession numbers for the corresponding precursor proteins are: Arub, A. rubens PP/orcokinin-type precursor [GenBank: KT601720]; Spur1, S. purpuratus PP/orcokinin-type precursor 1 [GI:390335272]; Spur2, S. purpuratus PP/orcokinin-type precursor 2 [GI:390352581]; Ctel, C. teleta PP-type precursor [GI:161190484]; Lgig, L. gigantea PP-type precursor [GI:163513756]; Dmel, D. melanogaster orcokinin precursor [GI:442624594]. |
![]() |
Figure 18. Precursors of cysteine-rich peptide hormones and growth factors in A. rubens. Predicted signal peptides are shown in blue, putative peptide hormones/growth-factors are shown in red (with cysteine (C) residues underlined), C-terminal glycine (G) residues that are putative substrates for amidation are shown in orange and putative dibasic cleavage sites are shown in green. For ArIGFP1 and ArIGFP2, the C-peptide is shown in black, the D-domain (for ArIGFP1) is shown in olive and the E-domain is shown in maroon. |
![]() |
Figure 19. Alignment of glycoprotein/bursicon hormone-type precursors. Accession numbers for the corresponding precursor proteins are: Arub_GPA2_1, A. rubens glycoprotein hormone α-2 (GPA2)-type precursor 1 [GenBank: KT601721]; Arub_GPA2_2, A. rubens GPA2-type precursor 2 [GenBank: KT601722]; Arub_GPB5_1, A. rubens glycoprotein hormone β-5 (GPB5)-type precursor 1 [GenBank: KT601723], Arub_GPB5_2, A. rubens GPB5-type precursor 2 [GenBank: KT601724]; Arub_GPB5_3, A. rubens GPB5-type precursor 3 [GenBank: KT601725]; Arub_BursA, A. rubens bursicon-α-type precursor [GenBank: KT601726]; Arub_BursB, A. rubens bursicon-β-type precursor [GenBank: KT601727]; Hsap_GPA2, H. sapiens GPA2 precursor [GI:189491650]; Hsap_GPB5, H. sapiens GPB5 precursor [GI:21427593]; Hsap_FSHB, H. sapiens follicle-stimulating hormone (FSH) β-precursor [GI:124014246]; Hsap_CGB7, H. sapiens chorionic gonadotropin (CG) β-polypeptide 7 precursor [GI:15451749]; Hsap_LSHB, H. sapiens luteinizing hormone (LH) β-polypeptide precursor [GI:15431286]; Hsap_TSHB, H. sapiens the putative IGF-type receptor (TSH) β-precursor [GI:47479817]; Dmel_GPA2, D. melanogaster GPA2 precursor [GI:320546230]; Dmel_TSHB, D. melanogaster glycoprotein hormone β-subunit-related protein precursor [GI:21427595]; Dmel_BursA, D. melanogaster bursicon-α precursor [GI:665394724]; Dmel_BursB, D. melanogaster bursicon-β precursor [GI:62392020]. |
![]() |
Figure 20. Alignment of insulin/relaxin/insulin-like growth factor (IGF)-type precursors. Accession numbers for the corresponding precursor proteins are: Arub_Rel1, A. rubens relaxin-like gonad-stimulating peptide precursor [GenBank: KT601728]; Arub_Rel2, A. rubens relaxin-like peptide precursor 2 [GenBank: KT601729]; Arub_IGF1, A. rubens IGF-type precursor 1 [GenBank: KT601730]; Arub_IGF2, A. rubens IGF-type precursor 2 [GenBank: KT601731]; Spur_IGF1, S. purpuratus IGF-type precursor 1 [GI:390333650]; Spur_IGF2, S. purpuratus IGF-type precursor 2 [GI:390333648]; Skow, S. kowalevskii IGF-type precursor [GI:187064073]; Bflo1, B. floridae IGF-type precursor 1 [JGI:72897]; Bflo2, B. floridae IGF-type precursor 2 [JGI:74371]; Bflo3, B. floridae IGF-type precursor 3 [JGI:77763]; Bflo4, B. floridae IGF-type precursor 4 [JGI:100967]; Hsap_INS, H. sapiens insulin (INS) precursor [GI:186429]; Hsap_IGF1, H. sapiens IGF precursor [GI:49456676]; Hsap_REL1, H. sapiens relaxin-1 precursor [GI:35932]; Hsap_REL2, H. sapiens relaxin-2 precursor [GI:35926]; Hsap_REL3, H. sapiens relaxin-3 precursor [GI:17484095]; Dmel_INSL1, D. melanogaster insulin-like (INSL) peptide 1 precursor [GI:317423340]; Dmel_INSL2, D. melanogaster INSL peptide 2 precursor [GI:442631434]; Dmel_INSL3, D. melanogaster INSL peptide 3 precursor [GI:221331056]; Dmel_INSL4, D. melanogaster INSL peptide 4 precursor [GI:442631435]; Dmel_INSL5, D. melanogaster INSL peptide 5 precursor [GI:320545737]; Dmel_INSL6, D. melanogaster INSL peptide 6 precursor [GI:442614930]; Dmel_INSL7, D. melanogaster INSL peptide 7 precursor [GI:386763756]; Dmel_INSL8, D. melanogaster INSL peptide 8 precursor [GI:386771312]. |
![]() |
Figure 21. Precursors of putative neuropeptides in A. rubens that do not share apparent sequence similarity with known neuropeptide families. Predicted signal peptides are shown in blue, putative peptides are shown in red (with cysteine (C) residues underlined), C-terminal glycine (G) residues that are putative substrates for amidation are shown in orange and putative dibasic cleavage sites are shown in green. |
References [+] :
Aloyz,
Processing of the L5-67 precursor peptide and characterization of LUQIN in the LUQ neurons of Aplysia californica.
1995, Pubmed
Aloyz, Processing of the L5-67 precursor peptide and characterization of LUQIN in the LUQ neurons of Aplysia californica. 1995, Pubmed
Amara, Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. 1982, Pubmed
Bahn, Comparative analysis of Pdf-mediated circadian behaviors between Drosophila melanogaster and D. virilis. 2009, Pubmed
Bauknecht, Large-Scale Combinatorial Deorphanization of Platynereis Neuropeptide GPCRs. 2015, Pubmed
Beets, Vasopressin/oxytocin-related signaling regulates gustatory associative learning in C. elegans. 2012, Pubmed
Beets, Ancient neuromodulation by vasopressin/oxytocin-related peptides. 2013, Pubmed
Bendtsen, Improved prediction of signal peptides: SignalP 3.0. 2004, Pubmed
Birenheide, Peptides controlling stifness of connective tissue in sea cucumbers. 1998, Pubmed , Echinobase
Brazeau, Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. 1973, Pubmed
Breese, Effects of TRH on central nervous system function. 1981, Pubmed
Broad, Mother-infant bonding and the evolution of mammalian social relationships. 2006, Pubmed
Büllesbach, The relaxin receptor-binding site geometry suggests a novel gripping mode of interaction. 2000, Pubmed
Burke, A genomic view of the sea urchin nervous system. 2006, Pubmed , Echinobase
Cabrero, The Dh gene of Drosophila melanogaster encodes a diuretic peptide that acts through cyclic AMP. 2002, Pubmed
Campbell, Piecing together evolution of the vertebrate endocrine system. 2004, Pubmed
Chang, Isolation of a sialogogic peptide from bovine hypothalamic tissue and its characterization as substance P. 1970, Pubmed
Chen, Drosulfakinin activates CCKLR-17D1 and promotes larval locomotion and escape response in Drosophila. 2012, Pubmed
Christie, Two novel tachykinin-related peptides from the nervous system of the crab Cancer borealis. 1997, Pubmed
Chung, New functions of arthropod bursicon: inducing deposition and thickening of new cuticle and hemocyte granulation in the blue crab, Callinectes sapidus. 2012, Pubmed
Colledge, Transgenic mouse models to study Gpr54/kisspeptin physiology. 2009, Pubmed
Conn, The bag cell neurons of Aplysia. A model for the study of the molecular mechanisms involved in the control of prolonged animal behaviors. 1989, Pubmed
Conzelmann, The neuropeptide complement of the marine annelid Platynereis dumerilii. 2013, Pubmed
d'Anglemont de Tassigny, Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. 2007, Pubmed
De'ath, The 27-year decline of coral cover on the Great Barrier Reef and its causes. 2012, Pubmed , Echinobase
de Bree, Structure-function relationships of the vasopressin prohormone domains. 1998, Pubmed
de Lecea, The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. 1998, Pubmed
de Lecea, Cortistatin is expressed in a distinct subset of cortical interneurons. 1997, Pubmed
de Pablo, Insulin-related molecules and insulin effects in the sea urchin embryo. 1988, Pubmed , Echinobase
de Roux, Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. 2003, Pubmed
Dockray, Molecular evolution of gut hormones: application of comparative studies on the regulation of digestion. 1977, Pubmed
Dos Santos, Distinct expression patterns of glycoprotein hormone-alpha2 and -beta5 in a basal chordate suggest independent developmental functions. 2009, Pubmed
Dufresne, Cholecystokinin and gastrin receptors. 2006, Pubmed
Elekonich, Insect allatotropins belong to a family of structurally-related myoactive peptides present in several invertebrate phyla. 2003, Pubmed
Elizur, The KiSS1/GPR54 system in fish. 2009, Pubmed
Elphick, SALMFamide salmagundi: the biology of a neuropeptide family in echinoderms. 2014, Pubmed , Echinobase
Elphick, The evolution and diversity of SALMFamide neuropeptides. 2013, Pubmed , Echinobase
Elphick, Neural control of muscle relaxation in echinoderms. 2001, Pubmed , Echinobase
Elphick, The protein precursors of peptides that affect the mechanics of connective tissue and/or muscle in the echinoderm Apostichopus japonicus. 2012, Pubmed , Echinobase
Elphick, From gonadotropin-inhibitory hormone to SIFamides: are echinoderm SALMFamides the "missing link" in a bilaterian family of neuropeptides that regulate reproductive processes? 2013, Pubmed , Echinobase
Elphick, Reconstructing SALMFamide Neuropeptide Precursor Evolution in the Phylum Echinodermata: Ophiuroid and Crinoid Sequence Data Provide New Insights. 2015, Pubmed , Echinobase
Elphick, Molecular characterisation of SALMFamide neuropeptides in sea urchins. 2005, Pubmed , Echinobase
Elphick, Distribution and action of SALMFamide neuropeptides in the starfish Asterias rubens. 1995, Pubmed , Echinobase
Elphick, NGFFFamide and echinotocin: structurally unrelated myoactive neuropeptides derived from neurophysin-containing precursors in sea urchins. 2009, Pubmed , Echinobase
Elphick, The Evolution and Variety of RFamide-Type Neuropeptides: Insights from Deuterostomian Invertebrates. 2014, Pubmed , Echinobase
Elphick, Isolation of the neuropeptide SALMFamide-1 from starfish using a new antiserum. 1991, Pubmed , Echinobase
Elphick, NG peptides: a novel family of neurophysin-associated neuropeptides. 2010, Pubmed , Echinobase
Elphick, The SALMFamides: a new family of neuropeptides isolated from an echinoderm. 1991, Pubmed , Echinobase
Epelbaum, Somatostatin in the central nervous system: physiology and pathological modifications. 1986, Pubmed
Fernlund, Structure of a light-adapting hormone from the shrimp, Pandalus borealis. 1976, Pubmed
Fodor, NPY neurons express somatostatin receptor subtype 1 in the arcuate nucleus. 2005, Pubmed
Fraenkel, Properties of bursicon: an insect protein hormone that controls cuticular tanning. 1966, Pubmed
Fujimoto, A novel cardio-excitatory peptide isolated from the atria of the African giant snail, Achatina fulica. 1990, Pubmed
Funes, The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system. 2003, Pubmed
Furuya, Cockroach diuretic hormones: characterization of a calcitonin-like peptide in insects. 2000, Pubmed
Gäde, Regulation of intermediary metabolism and water balance of insects by neuropeptides. 2004, Pubmed
Galas, TRH acts as a multifunctional hypophysiotropic factor in vertebrates. 2009, Pubmed
Gammie, Neuropeptide hierarchies and the activation of sequential motor behaviors in the hawkmoth, Manduca sexta. 1997, Pubmed
Garrison, Oxytocin/vasopressin-related peptides have an ancient role in reproductive behavior. 2012, Pubmed
Gimpl, The oxytocin receptor system: structure, function, and regulation. 2001, Pubmed
Good-Avila, Relaxin gene family in teleosts: phylogeny, syntenic mapping, selective constraint, and expression analysis. 2009, Pubmed
Gorbman, Evolution of the role of GnRH in animal (Metazoan) biology. 2003, Pubmed
Guilloteau, Gastrin, cholecystokinin and gastrointestinal tract functions in mammals. 2006, Pubmed
Hall, Involvement of pedal peptide in locomotion in Aplysia: modulation of foot muscle contractions. 1990, Pubmed
Hansen, Discovery of a novel insect neuropeptide signaling system closely related to the insect adipokinetic hormone and corazonin hormonal systems. 2010, Pubmed
Harada, Structure and function of the molluscan myoactive tetradecapeptides. 1993, Pubmed
Harms, KISS1 metastasis suppression and emergent pathways. 2003, Pubmed
Harshini, Inhibition of digestive enzyme release by neuropeptides in larvae of Opisina arenosella (Lepidoptera: Cryptophasidae). 2002, Pubmed
Henderson, Vasopressin-induced vasoconstriction: two concentration-dependent signaling pathways. 2007, Pubmed
Hewes, Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. 2001, Pubmed
Hofer, Evidence for a role of orcokinin-related peptides in the circadian clock controlling locomotor activity of the cockroach Leucophaea maderae. 2006, Pubmed
Hoffmann, Evolution of the relaxin/insulin-like gene family in placental mammals: implications for its early evolution. 2011, Pubmed
Holland, The amphioxus genome illuminates vertebrate origins and cephalochordate biology. 2008, Pubmed
Hordijk, Primary structure and origin of schistosomin, an anti-gonadotropic neuropeptide of the pond snail Lymnaea stagnalis. 1991, Pubmed
Hoyle, Neuropeptide families and their receptors: evolutionary perspectives. 1999, Pubmed
Hruby, Emerging approaches in the molecular design of receptor-selective peptide ligands: conformational, topographical and dynamic considerations. 1990, Pubmed
Hsu, Evolution of glycoprotein hormone subunit genes in bilateral metazoa: identification of two novel human glycoprotein hormone subunit family genes, GPA2 and GPB5. 2002, Pubmed
Hudson, Molecular cloning and characterization of cDNA sequences coding for rat relaxin. 1981, Pubmed
Ida, Identification of the endogenous cysteine-rich peptide trissin, a ligand for an orphan G protein-coupled receptor in Drosophila. 2011, Pubmed
Ikeda, Two novel tachykinin-related neuropeptides in the echiuroid worm, Urechis unicinctus. 1993, Pubmed
Insel, The neurobiology of attachment. 2001, Pubmed
Iwakoshi, Isolation and characterization of a GnRH-like peptide from Octopus vulgaris. 2002, Pubmed
Janssen, Discovery and characterization of a conserved pigment dispersing factor-like neuropeptide pathway in Caenorhabditis elegans. 2009, Pubmed
Janssen, Discovery of a cholecystokinin-gastrin-like signaling system in nematodes. 2008, Pubmed
Jékely, Global view of the evolution and diversity of metazoan neuropeptide signaling. 2013, Pubmed
Johnsen, Cionin: a disulfotyrosyl hybrid of cholecystokinin and gastrin from the neural ganglion of the protochordate Ciona intestinalis. 1990, Pubmed
Johnsen, Phylogeny of the cholecystokinin/gastrin family. 1998, Pubmed
Kah, GnRH and GnRH receptors in metazoa: a historical, comparative, and evolutive perspective. 2007, Pubmed
Kanatani, Mechanism of starfish spawning. 3. Properties and action of meiosis-inducing substance produced in gonad under influence of gonad-stimulating substance. 1970, Pubmed , Echinobase
Kanatani, Purification of gonad-stimulating substance obtained from radial nerves of the starfish, Asterias amurensis. 1971, Pubmed , Echinobase
Kanda, Isolation and characterization of novel tachykinins from the posterior salivary gland of the common octopus Octopus vulgaris. 2003, Pubmed
Kangawa, Neuromedin K: a novel mammalian tachykinin identified in porcine spinal cord. 1983, Pubmed
Kataoka, Identification of an allatotropin from adult manduca sexta. 1989, Pubmed
Katoh, MAFFT multiple sequence alignment software version 7: improvements in performance and usability. 2013, Pubmed
Kawada, Characterization of a novel vasopressin/oxytocin superfamily peptide and its receptor from an ascidian, Ciona intestinalis. 2008, Pubmed
Kawada, Characterization of a novel cDNA sequence encoding invertebrate tachykinin-related peptides isolated from the echiuroid worm, Urechis unicinctus. 1999, Pubmed
Kawauchi, Melanin-concentrating hormone signaling systems in fish. 2004, Pubmed
Kawauchi, Characterization of melanin-concentrating hormone in chum salmon pituitaries. 1983, Pubmed
Kawauchi, Functions of melanin-concentrating hormone in fish. 2006, Pubmed
Kawazoe, Characterization of melanin concentrating hormone in teleost hypothalamus. 1987, Pubmed
Kayal, Predator crown-of-thorns starfish (Acanthaster planci) outbreak, mass mortality of corals, and cascading effects on reef fish and benthic communities. 2012, Pubmed , Echinobase
Kegel, Amino acid sequence of the crustacean hyperglycemic hormone (CHH) from the shore crab, Carcinus maenas. 1989, Pubmed
Kim, Revisiting the evolution of gonadotropin-releasing hormones and their receptors in vertebrates: secrets hidden in genomes. 2011, Pubmed
Kono, Eclosion hormone of the silkworm Bombyx mori. Expression in Escherichia coli and location of disulfide bonds. 1990, Pubmed
Konturek, Neuroendocrinology of the pancreas; role of brain-gut axis in pancreatic secretion. 2003, Pubmed
Kovac, Tachykinin receptor expression and function in human esophageal smooth muscle. 2006, Pubmed
Kramer, Identification of an allatostatin from the tobacco hornworm Manduca sexta. 1991, Pubmed
Krishnan, The role of G protein-coupled receptors in the early evolution of neurotransmission and the nervous system. 2015, Pubmed
Lapatto, Kiss1-/- mice exhibit more variable hypogonadism than Gpr54-/- mice. 2007, Pubmed
Larsson, Evidence for a common evolutionary origin of gastrin and cholecystokinin. 1977, Pubmed
Lebl, Melanin concentrating hormone analogues: contraction of the cyclic structure. 1. Agonist activity. 1988, Pubmed
Lechan, Thyrotropin-releasing hormone precursor: characterization in rat brain. 1986, Pubmed
Lee, Inhibition of midgut ion transport by allatotropin (Mas-AT) and Manduca FLRFamides in the tobacco hornworm Manduca sexta. 1998, Pubmed
Lee, Pigment dispersing factor: an output regulator of the circadian clock in the German cockroach. 2009, Pubmed
Lee, KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. 1996, Pubmed
Li, Cerebrin prohormone processing, distribution and action in Aplysia californica. 2001, Pubmed
Li, Purification and characterization of a novel tetradecapeptide that modulates oesophagus motility in Lymnaea stagnalis. 1993, Pubmed
Li, Genomics, transcriptomics, and peptidomics of neuropeptides and protein hormones in the red flour beetle Tribolium castaneum. 2008, Pubmed
Li, SOAP: short oligonucleotide alignment program. 2008, Pubmed
Li, Biochemical, molecular, and functional characterization of PISCF-allatostatin, a regulator of juvenile hormone biosynthesis in the mosquito Aedes aegypti. 2006, Pubmed
LIGHT, On the nature of oxytocin and vasopressin from human pituitary. 1958, Pubmed
Lindemans, Gonadotropin-releasing hormone and adipokinetic hormone signaling systems share a common evolutionary origin. 2011, Pubmed
Lindemans, Adipokinetic hormone signaling through the gonadotropin-releasing hormone receptor modulates egg-laying in Caenorhabditis elegans. 2009, Pubmed
Liu, In silico identification of new secretory peptide genes in Drosophila melanogaster. 2006, Pubmed
Liu, The evolution of somatostatin in vertebrates. 2010, Pubmed
Lloyd, Sequence of pedal peptide: a novel neuropeptide from the central nervous system of Aplysia. 1989, Pubmed
Longley, Neuronal control of pedal sole cilia in the pond snail Lymnaea stagnalis appressa. 2013, Pubmed
Lorenz, Identification of two allatostatins from the cricket, Gryllus bimaculatus de Geer (Ensifera, Gryllidae): additional members of a family of neuropeptides inhibiting juvenile hormone biosynthesis. 1995, Pubmed
Lovejoy, Evolution and physiology of the corticotropin-releasing factor (CRF) family of neuropeptides in vertebrates. 1999, Pubmed
Luo, Bursicon, the insect cuticle-hardening hormone, is a heterodimeric cystine knot protein that activates G protein-coupled receptor LGR2. 2005, Pubmed
Maestro, Screening of antifeedant activity in brain extracts led to the identification of sulfakinin as a satiety promoter in the German cockroach. Are arthropod sulfakinins homologous to vertebrate gastrins-cholecystokinins? 2001, Pubmed
Matsuda, Orexin system in teleost fish. 2012, Pubmed
McCall, The animal and human neuroendocrinology of social cognition, motivation and behavior. 2012, Pubmed
McCormick, Hormonal control of salt and water balance in vertebrates. 2006, Pubmed
Meelkop, PDF receptor signaling in Caenorhabditis elegans modulates locomotion and egg-laying. 2012, Pubmed
Melarange, Comparative analysis of nitric oxide and SALMFamide neuropeptides as general muscle relaxants in starfish. 2003, Pubmed , Echinobase
Menschaert, A hybrid, de novo based, genome-wide database search approach applied to the sea urchin neuropeptidome. 2010, Pubmed , Echinobase
Meyer-Lindenberg, Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. 2011, Pubmed
Mirabeau, Identification of novel peptide hormones in the human proteome by hidden Markov model screening. 2007, Pubmed
Mirabeau, Molecular evolution of peptidergic signaling systems in bilaterians. 2013, Pubmed
Mita, A relaxin-like peptide purified from radial nerves induces oocyte maturation and ovulation in the starfish, Asterina pectinifera. 2009, Pubmed , Echinobase
Mita, Relaxin-like gonad-stimulating substance in an echinoderm, the starfish: a novel relaxin system in reproduction of invertebrates. 2013, Pubmed , Echinobase
Mita, A new relaxin-like gonad-stimulating peptide identified in the starfish Asterias amurensis. 2015, Pubmed , Echinobase
Monti, Melanin-concentrating hormone control of sleep-wake behavior. 2013, Pubmed
Moore, Immunocytochemical mapping of the novel echinoderm neuropeptide SALMFamide 1 (S1) in the starfish Asterias rubens. 1993, Pubmed , Echinobase
Morgan, Evolution of GnRH ligand precursors and GnRH receptors in protochordate and vertebrate species. 2004, Pubmed
Mutt, Structure of porcine cholecystokinin-pancreozymin. 1. Cleavage with thrombin and with trypsin. 1968, Pubmed
Nachman, Leucosulfakinin, a sulfated insect neuropeptide with homology to gastrin and cholecystokinin. 1986, Pubmed
Nachman, Leucosulfakinin-II, a blocked sulfated insect neuropeptide with homology to cholecystokinin and gastrin. 1986, Pubmed
Nahon, The melanin-concentrating hormone: from the peptide to the gene. 1994, Pubmed
Nakabayashi, Thyrostimulin, a heterodimer of two new human glycoprotein hormone subunits, activates the thyroid-stimulating hormone receptor. 2002, Pubmed
Nässel, Tachykinin-related peptides in invertebrates: a review. 1999, Pubmed
Nathoo, Identification of neuropeptide-like protein gene families in Caenorhabditiselegans and other species. 2001, Pubmed
Naufahu, The roles of melanin-concentrating hormone in energy balance and reproductive function: Are they connected? 2013, Pubmed
Nawa, Tissue-specific generation of two preprotachykinin mRNAs from one gene by alternative RNA splicing. 1985, Pubmed
Newman, Tissue distribution of the SALMFamide neuropeptides S1 and S2 in the starfish Asterias rubens using novel monoclonal and polyclonal antibodies. I. Nervous and locomotory systems. 1995, Pubmed , Echinobase
Nichols, Plasticity in the effects of sulfated and nonsulfated sulfakinin on heart contractions. 2009, Pubmed
Nieto, Identification of one tachykinin- and two kinin-related peptides in the brain of the white shrimp, Penaeus vannamei. 1998, Pubmed
Oakley, Kisspeptin signaling in the brain. 2009, Pubmed
O'Hara, Phylogenomic resolution of the class Ophiuroidea unlocks a global microfossil record. 2014, Pubmed , Echinobase
Ohira, Molecular cloning of cDNAs encoding two pigment-dispersing hormones and two corresponding genes from the kuruma prawn (Penaeus japonicus). 2002, Pubmed
O'Shea, Adipokinetic hormones: cell and molecular biology. 1992, Pubmed
Oumi, Annetocin, an annelid oxytocin-related peptide, induces egg-laying behavior in the earthworm, Eisenia foetida. 1996, Pubmed
Paluzzi, The heterodimeric glycoprotein hormone, GPA2/GPB5, regulates ion transport across the hindgut of the adult mosquito, Aedes aegypti. 2014, Pubmed
Park, Conservation of the heterodimeric glycoprotein hormone subunit family proteins and the LGR signaling system from nematodes to humans. 2005, Pubmed
Perillo, Characterization of insulin-like peptides (ILPs) in the sea urchin Strongylocentrotus purpuratus: insights on the evolution of the insulin family. 2014, Pubmed , Echinobase
Phlippen, Ecdysis of decapod crustaceans is associated with a dramatic release of crustacean cardioactive peptide into the haemolymph. 2000, Pubmed
Pielecka-Fortuna, Kisspeptin acts directly and indirectly to increase gonadotropin-releasing hormone neuron activity and its effects are modulated by estradiol. 2008, Pubmed
Pierce, Glycoprotein hormones: structure and function. 1981, Pubmed
Pinilla, Kisspeptins and reproduction: physiological roles and regulatory mechanisms. 2012, Pubmed
Potts, The amino acid sequence of porcine thyrocalcitonin. 1968, Pubmed
Pratt, Identity of a second type of allatostatin from cockroach brains: an octadecapeptide amide with a tyrosine-rich address sequence. 1991, Pubmed
Pratt, Identification of an allatostatin from adult Diploptera punctata. 1989, Pubmed
Presse, Structure of the human melanin concentrating hormone mRNA. 1990, Pubmed
Price, Drosophila melanogaster flatline encodes a myotropin orthologue to Manduca sexta allatostatin. 2002, Pubmed
Proux, Identification of an arginine vasopressin-like diuretic hormone from Locusta migratoria. 1987, Pubmed
Putnam, The amphioxus genome and the evolution of the chordate karyotype. 2008, Pubmed
Rao, Pigment-dispersing hormones. 1993, Pubmed
Reinecke, The phylogeny of the insulin-like growth factors. 1998, Pubmed
Renn, A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. 1999, Pubmed
Richard, KiSS-1 and GPR54 at the pituitary level: overview and recent insights. 2009, Pubmed
Richter, Biosynthesis of thyrotropin releasing hormone in the skin of Xenopus laevis: partial sequence of the precursor deduced from cloned cDNA. 1984, Pubmed
Rivier, Somatostatin analogs. Relative importance of the disulfide bridge and of the Ala-Gly side chain for biological activity. 1975, Pubmed
Rizzi, Neuropeptide S is a stimulatory anxiolytic agent: a behavioural study in mice. 2008, Pubmed
Roch, At the transition from invertebrates to vertebrates, a novel GnRH-like peptide emerges in amphioxus. 2014, Pubmed
Roch, Evolution of GnRH: diving deeper. 2011, Pubmed
Rowe, Neuropeptides and polypeptide hormones in echinoderms: new insights from analysis of the transcriptome of the sea cucumber Apostichopus japonicus. 2014, Pubmed , Echinobase
Rowe, The neuropeptide transcriptome of a model echinoderm, the sea urchin Strongylocentrotus purpuratus. 2012, Pubmed , Echinobase
Russell, Calcitonin gene-related peptide: physiology and pathophysiology. 2014, Pubmed
Sakurai, Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. 1998, Pubmed
Sakurai, The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. 2007, Pubmed
Salzet, Leech egg-laying-like hormone: structure, neuronal distribution and phylogeny. 1997, Pubmed
Samanta, The transcriptome of the sea urchin embryo. 2006, Pubmed , Echinobase
Satake, Tachykinin and tachykinin receptor of an ascidian, Ciona intestinalis: evolutionary origin of the vertebrate tachykinin family. 2004, Pubmed
Sawyer, Evolution of neurohypophyseal hormones and their receptors. 1977, Pubmed
Scheller, A single gene encodes multiple neuropeptides mediating a stereotyped behavior. 1983, Pubmed
Seidah, Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. 1999, Pubmed
Sellami, Neuroendocrine cells in Drosophila melanogaster producing GPA2/GPB5, a hormone with homology to LH, FSH and TSH. 2011, Pubmed
Seminara, The GPR54 gene as a regulator of puberty. 2003, Pubmed
Semmens, Discovery of a novel neurophysin-associated neuropeptide that triggers cardiac stomach contraction and retraction in starfish. 2013, Pubmed , Echinobase
Semmens, Discovery of sea urchin NGFFFamide receptor unites a bilaterian neuropeptide family. 2015, Pubmed , Echinobase
Severini, The tachykinin peptide family. 2002, Pubmed
Shibusawa, Thyrotropin-releasing hormone (TRH) in the cerebellum. 2008, Pubmed
Shimizu, Tachykinins and their functions in the gastrointestinal tract. 2008, Pubmed
Siviter, Expression and functional characterization of a Drosophila neuropeptide precursor with homology to mammalian preprotachykinin A. 2000, Pubmed
Soehler, Circadian pacemaker coupling by multi-peptidergic neurons in the cockroach Leucophaea maderae. 2011, Pubmed
Song, Control of lipid metabolism by tachykinin in Drosophila. 2014, Pubmed
Sower, The origins of the vertebrate hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-thyroid (HPT) endocrine systems: new insights from lampreys. 2009, Pubmed
Soyez, Primary structure of two isoforms of the vitellogenesis inhibiting hormone from the lobster Homarus americanus. 1991, Pubmed
Stangier, Orcokinin: a novel myotropic peptide from the nervous system of the crayfish, Orconectes limosus. 1992, Pubmed
Sudo, Heterodimeric fly glycoprotein hormone-alpha2 (GPA2) and glycoprotein hormone-beta5 (GPB5) activate fly leucine-rich repeat-containing G protein-coupled receptor-1 (DLGR1) and stimulation of human thyrotropin receptors by chimeric fly GPA2 and human GPB5. 2005, Pubmed
Taghert, Peptide neuromodulation in invertebrate model systems. 2012, Pubmed
Telford, Phylogenomic analysis of echinoderm class relationships supports Asterozoa. 2014, Pubmed , Echinobase
Tensen, The lymnaea cardioexcitatory peptide (LyCEP) receptor: a G-protein-coupled receptor for a novel member of the RFamide neuropeptide family. 1998, Pubmed
Timmers, There's no place like home: crown-of-thorns outbreaks in the central pacific are regionally derived and independent events. 2012, Pubmed , Echinobase
Tostivint, New insight into the molecular evolution of the somatostatin family. 2008, Pubmed
Troshin, Java bioinformatics analysis web services for multiple sequence alignment--JABAWS:MSA. 2011, Pubmed
Tsai, Gonadotropin-releasing hormone in invertebrates: structure, function, and evolution. 2006, Pubmed
Tsai, The emergence and loss of gonadotropin-releasing hormone in protostomes: orthology, phylogeny, structure, and function. 2008, Pubmed
Tsujino, Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward system. 2009, Pubmed
Ukena, A novel gut tetradecapeptide isolated from the earthworm, Eisenia foetida. 1995, Pubmed
Ukena, Unique form and osmoregulatory function of a neurohypophysial hormone in a urochordate. 2008, Pubmed
Urano, Molecular evolution of neurohypophysial hormone precursors. 1992, Pubmed
Vale, Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. 1981, Pubmed
van Kesteren, A vasopressin-related peptide in the mollusc Lymnaea stagnalis: peptide structure, prohormone organization, evolutionary and functional aspects of Lymnaea conopressin. 1992, Pubmed
Van Loy, Tachykinin-related peptides and their receptors in invertebrates: a current view. 2010, Pubmed
Van Loy, Evolutionary conservation of bursicon in the animal kingdom. 2007, Pubmed
Veelaert, Identification of a new tachykinin from the midgut of the desert locust, Schistocerca gregaria, by ESI-Qq-oa-TOF mass spectrometry. 1999, Pubmed
Veenstra, Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. 2000, Pubmed
Veenstra, Allatotropin is a cardioacceleratory peptide in Manduca sexta. 1994, Pubmed
Veenstra, Neurohormones and neuropeptides encoded by the genome of Lottia gigantea, with reference to other mollusks and insects. 2010, Pubmed
Veenstra, Neuropeptide evolution: neurohormones and neuropeptides predicted from the genomes of Capitella teleta and Helobdella robusta. 2011, Pubmed
Veenstra, Allatostatin C and its paralog allatostatin double C: the arthropod somatostatins. 2009, Pubmed
Veenstra, The contribution of the genomes of a termite and a locust to our understanding of insect neuropeptides and neurohormones. 2014, Pubmed
V Euler, An unidentified depressor substance in certain tissue extracts. 1931, Pubmed
Viollet, Somatostatinergic systems in brain: networks and functions. 2008, Pubmed
Vreugdenhil, Isolation, characterization, and evolutionary aspects of a cDNA clone encoding multiple neuropeptides involved in the stereotyped egg-laying behavior of the freshwater snail Lymnaea stagnalis. 1988, Pubmed
Walsh, Tachykinins and the cardiovascular system. 2006, Pubmed
Waterhouse, Jalview Version 2--a multiple sequence alignment editor and analysis workbench. 2009, Pubmed
Weaver, Neuropeptide regulators of juvenile hormone synthesis: structures, functions, distribution, and unanswered questions. 2009, Pubmed
Webster, Bursicon and neuropeptide cascades during the ecdysis program of the shore crab, Carcinus maenas. 2013, Pubmed
Webster, Amino acid sequence of putative moult-inhibiting hormone from the crab Carcinus maenas. 1991, Pubmed
Wei, Light affects the branching pattern of peptidergic circadian pacemaker neurons in the brain of the cockroach Leucophaea maderae. 2011, Pubmed
Wei, Sulfakinins reduce food intake in the desert locust, Schistocerca gregaria. 2000, Pubmed
Wendelaar Bonga, Control of calcium regulating hormones in the vertebrates: parathyroid hormone, calcitonin, prolactin, and stanniocalcin. 1991, Pubmed
Wilcockson, Identification and developmental expression of mRNAs encoding putative insect cuticle hardening hormone, bursicon in the green shore crab Carcinus maenas. 2008, Pubmed
Wilkie, Mutable collagenous tissue: overview and biotechnological perspective. 2005, Pubmed , Echinobase
Wilkinson, The evolution of the relaxin peptide family and their receptors. 2007, Pubmed
Williamson, Molecular cloning, genomic organization, and expression of a C-type (Manduca sexta-type) allatostatin preprohormone from Drosophila melanogaster. 2001, Pubmed
Wilson, Starfish insulin. 1965, Pubmed , Echinobase
Woodhead, Primary structure of four allatostatins: neuropeptide inhibitors of juvenile hormone synthesis. 1989, Pubmed
Yamanaka, Bombyx orcokinins are brain-gut peptides involved in the neuronal regulation of ecdysteroidogenesis. 2011, Pubmed
Yegorov, Using paleogenomics to study the evolution of gene families: origin and duplication history of the relaxin family hormones and their receptors. 2012, Pubmed
Young, The neurobiology of pair bonding. 2004, Pubmed
Zhang, Kisspeptin depolarizes gonadotropin-releasing hormone neurons through activation of TRPC-like cationic channels. 2008, Pubmed
Zhang, Biological and immunological characterization of multiple GnRH in an opisthobranch mollusk, Aplysia californica. 2000, Pubmed
Zohar, Neuroendocrinology of reproduction in teleost fish. 2010, Pubmed