Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-44052
R Soc Open Sci 2014 Nov 19;13:140294. doi: 10.1098/rsos.140294.
Show Gene links Show Anatomy links

Seasonal dynamics of megafauna on the deep West Antarctic Peninsula shelf in response to variable phytodetrital influx.

Sumida PY , Smith CR , Bernardino AF , Polito PS , Vieira DR .


???displayArticle.abstract???
The deep West Antarctic Peninsula (WAP) shelf is characterized by intense deposition of phytodetritus during spring/summer months, while very little food material reaches the seafloor during winter. The response of the shelf benthic megafauna to this highly variable food supply is still poorly understood. In order to characterize the deposition of phytodetritus and the megabenthic community response, we deployed a seafloor time-lapse camera at approximately 590 m depth on the mid WAP shelf west of Anvers Island for 15 months. Seafloor photographs were taken at intervals of 12 or 24 h nearly continuously from 9 December 1999 (austral winter) to 20 March 2001 (summer) and analysed for phytodetritus deposition and megafaunal dynamics. Seafloor images indicated a marked seasonal arrival of greenish phytodetritus, with large interannual and seasonal variability in the coverage of depositing phytodetrital particles. The surface-deposit-feeding elasipod holothurians Protelpidia murrayi and Peniagone vignoni dominated the epibenthic megafauna throughout the year, frequently constituting more than 80% of the megafaunal abundance, attaining total densities of up to 2.4 individuals m(-2). Elasipod abundances were significantly higher in summer than winter. During summer periods of high phytodetrital flux, Pr. murrayi produced faecal casts at higher rates, indicating intensified population-level feeding activity. In March-June 2000, faecal casts lasted longest, suggesting lower horizontal bioturbation activity during autumn-winter. Our data indicate that the Pr. murrayi population increases its feeding rates in response to increasing amounts and/or lability of organic matter on the sediment surface. Assuming that this species feeds on the top millimetre of the sediment, we estimate that, during periods of high phytodetrital flux, the Pr. murrayi population reworks one square metre of sediment surface in approximately 287 days. We suggest that Pr. murrayi is an important species for organic-carbon recycling on the deep WAP shelf, controlling the availability of deposited labile phytodetritus to the broader shelf benthic community.

???displayArticle.pubmedLink??? 26064564
???displayArticle.pmcLink??? PMC4448839
???displayArticle.link??? R Soc Open Sci


Genes referenced: LOC100893907 LOC115925415 LOC590178


???attribute.lit??? ???displayArticles.show???
References [+] :
Clarke, Climate change and the marine ecosystem of the western Antarctic Peninsula. 2007, Pubmed