Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-43533
Toxicon 2014 Oct 01;89:77-86. doi: 10.1016/j.toxicon.2014.07.005.
Show Gene links Show Anatomy links

Application of passive (SPATT) and active sampling methods in the profiling and monitoring of marine biotoxins.

McCarthy M , van Pelt FN , Bane V , O'Halloran J , Furey A .


???displayArticle.abstract???
Solid phase adsorbent and toxin tracking (SPATT) enables temporally and spatially integrated monitoring of biotoxins in aquatic environments. Monitoring using two adsorbent resins was performed over a four-month period at Lough Hyne Marine Reserve, Ireland. A range of Diarhettic Shellfish Poisoning (DSP) toxins were detected from SPATT extracts throughout the study period. The majority of biotoxins were detected in the top 20-30 m of the water column and a spike in toxin accumulation was measured during August 2010. Phytoplankton analysis confirmed the presence of toxin-producing species Dinophysis acuta and Dinophysis acuminata during the bloom. SPATT has the potential to provide useful information on phycotoxin distribution in the water column; enabling evidence-based decisions regarding appropriate depths for obtaining phytoplankton and shellfish samples in marine biotoxin monitoring programmes. Active sampling was performed continuously over 7-days and high quantities of toxins were successfully accumulated in the HP-20 resin, okadaic acid (∼13 mg), dinophysis toxin-2 (∼29 mg), pectenotoxin-2 (∼20 mg) and pectenotoxin-2-seco acid (∼6 mg) proving this an effective method for accumulating DSP toxins from the marine environment. The method has potential application as a tool for assessing toxin profiles at proposed shellfish harvesting sites.

???displayArticle.pubmedLink??? 25064272
???displayArticle.link??? Toxicon