Click
here to close Hello! We notice that
you are using Internet Explorer, which is not supported by Echinobase
and may cause the site to display incorrectly. We suggest using a
current version of Chrome,
FireFox,
or Safari.
Dev Biol
2014 Feb 15;3862:302-7. doi: 10.1016/j.ydbio.2013.12.035.
Show Gene links
Show Anatomy links
Oral-aboral axis specification in the sea urchin embryo, IV: hypoxia radializes embryos by preventing the initial spatialization of nodal activity.
Coffman JA
,
Wessels A
,
DeSchiffart C
,
Rydlizky K
.
???displayArticle.abstract???
The oral-aboral axis of the sea urchin embryo is specified conditionally via a regulated feedback circuit involving the signaling gene nodal and its antagonist lefty. In normal development nodal activity becomes localized to the prospective oral side of the blastula stage embryo, a process that requires lefty. In embryos of Strongylocentrotus purpuratus, a redox gradient established by asymmetrically distributed mitochondria provides an initial spatial input that positions the localized domain of nodal expression. This expression is perturbed by hypoxia, leading to development of radialized embryos lacking an oral-aboral axis. Here we show that this radialization is not caused by a failure to express nodal, but rather by a failure to localize nodal activity to one side of the embryo. This occurs even when embryos are removed from hypoxia at late cleavage stage when nodal is first expressed, indicating that the effect involves the initiation phase of nodal activity, rather than its positive feedback-driven amplification and maintenance. Quantitative fluorescence microscopy of MitoTracker Orange-labeled embryos expressing nodal-GFP reporter gene revealed that hypoxia abolishes the spatial correlation between mitochondrial distribution and nodal expression, suggesting that hypoxia eliminates the initial spatial bias in nodal activity normally established by the redox gradient. We propose that absent this bias, the initiation phase of nodal expression is spatially uniform, such that the ensuing Nodal-mediated community effect is not localized, and hence refractory to Lefty-mediated enforcement of localization.
Agca,
Reduced O2 and elevated ROS in sea urchin embryos leads to defects in ectoderm differentiation.
2009, Pubmed,
Echinobase
Agca,
Reduced O2 and elevated ROS in sea urchin embryos leads to defects in ectoderm differentiation.
2009,
Pubmed
,
Echinobase
Ben-Tabou de-Leon,
Gene regulatory control in the sea urchin aboral ectoderm: spatial initiation, signaling inputs, and cell fate lockdown.
2013,
Pubmed
,
Echinobase
Bolouri,
The gene regulatory network basis of the "community effect," and analysis of a sea urchin embryo example.
2010,
Pubmed
,
Echinobase
Bradham,
Chordin is required for neural but not axial development in sea urchin embryos.
2009,
Pubmed
,
Echinobase
Chen,
Lefty proteins are long-range inhibitors of squint-mediated nodal signaling.
2002,
Pubmed
Coffman,
Oral-aboral axis specification in the sea urchin embryo III. Role of mitochondrial redox signaling via H2O2.
2009,
Pubmed
,
Echinobase
Coffman,
Oral-aboral axis specification in the sea urchin embryo II. Mitochondrial distribution and redox state contribute to establishing polarity in Strongylocentrotus purpuratus.
2004,
Pubmed
,
Echinobase
Coluccio,
Oxygen, pH, and oral-aboral axis specification in the sea urchin embryo.
2011,
Pubmed
,
Echinobase
Duboc,
Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation.
2008,
Pubmed
,
Echinobase
Duboc,
Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo.
2004,
Pubmed
,
Echinobase
Ertl,
Nodal-mediated epigenesis requires dynamin-mediated endocytosis.
2011,
Pubmed
,
Echinobase
Flowers,
Nodal/activin signaling establishes oral-aboral polarity in the early sea urchin embryo.
2004,
Pubmed
,
Echinobase
Hardin,
Commitment along the dorsoventral axis of the sea urchin embryo is altered in response to NiCl2.
1992,
Pubmed
,
Echinobase
Lapraz,
Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network.
2009,
Pubmed
,
Echinobase
Müller,
Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system.
2012,
Pubmed
Nam,
Cis-regulatory control of the nodal gene, initiator of the sea urchin oral ectoderm gene network.
2007,
Pubmed
,
Echinobase
Range,
Maternal Oct1/2 is required for Nodal and Vg1/Univin expression during dorsal-ventral axis specification in the sea urchin embryo.
2011,
Pubmed
,
Echinobase
Range,
Cis-regulatory analysis of nodal and maternal control of dorsal-ventral axis formation by Univin, a TGF-beta related to Vg1.
2007,
Pubmed
,
Echinobase