Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-42400
J Exp Biol 2012 May 01;215Pt 9:1464-71. doi: 10.1242/jeb.068411.
Show Gene links Show Anatomy links

Experimental evaluation of the anti-attachment effect of microalgal mats on grazing activity of the sea urchin Strongylocentrotus nudus in oscillating flows.

Kawamata S .


???displayArticle.abstract???
Algal mats can hinder the adhesion of the tube feet of sea urchins. This leads to the hypothesis that the restriction of sea urchin feeding activity by wave action can potentially be enhanced by the presence of algal mats, which will facilitate the survival of kelp recruits at sites with wave action in urchin barrens. To evaluate the potential anti-attachment effect of algal mats on sea urchins, a laboratory tank experiment was performed on the movement of Strongylocentrotus nudus sea urchins and their grazing on juvenile kelp plants at the center of 30×30 cm flat test substrates with or without a thin-layer microalgal mat at four levels of oscillatory flow (maximum orbital velocity: 10, 20, 30 and 40 cm s(-1)). The grazing loss of kelp slightly increased with increasing velocity up to 30 cm s(-1) in the absence of microalgal mats, while in contrast the loss substantially decreased at 30 cm s(-1) in their presence. Sea urchins were dislodged more frequently at 20 cm s(-1) or higher velocities in the presence of microalgal mats. Mats were frequently abraded by scraping by the adoral spines during urchin movement at high velocities (30 and 40 cm s(-1)) but were subject to no or only slight urchin grazing in most cases. The results indicate that the overall decrease in grazing loss of kelp within the microalgal mats was attributable to the anti-attachment effect on urchins during incursions rather than due to urchins grazing on the mats.

???displayArticle.pubmedLink??? 22496282
???displayArticle.link??? J Exp Biol


Genes referenced: LOC100887844