Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-41962
Langmuir 2011 May 03;279:5644-9. doi: 10.1021/la200527p.
Show Gene links Show Anatomy links

Control over the hierarchical structure of titanate nanotube agglomerates.

Bavykin DV , Kulak AN , Walsh FC .


???displayArticle.abstract???
An alkaline hydrothermal treatment of several types of ordered macroporous TiO(2) structures, namely, microtubes, sea urchin shapes, and anodic nanotube arrays, has been investigated under stationary conditions. The effect of the size and geometry of these structures on the morphology of the forming hierarchical agglomerates of titanate nanotubes has been systematically studied. It has been revealed that, at sizes larger than the critical value (ca. 1 μm), the whole geometry of the initial ordered TiO(2) structure is maintained under reaction conditions leading to formation of hierarchical structures, in which bulk TiO(2) is replaced with titanate nanotube agglomerates. This principle provides a convenient route for the preparation of multiscale micro- and nanostructures of TiO(2) based materials. The analysis of critical size suggests that, under reaction conditions, due to the limited transport of dissolved Ti(IV) species, the growth of nanotubes occurs locally.

???displayArticle.pubmedLink??? 21452796
???displayArticle.link??? Langmuir


Genes referenced: LOC100887844