Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-41758
Environ Toxicol Chem 2010 Feb 01;292:311-319. doi: 10.1002/etc.45.
Show Gene links Show Anatomy links

A comparison of the copper sensitivity of six invertebrate species in ambient salt water of varying dissolved organic matter concentrations.

Arnold WR , Cotsifas JS , Ogle RS , DePalma SGS , Smith DS .


???displayArticle.abstract???
The copper sensitivity of four saltwater invertebrates (the mussel Mytilus galloprovincialis, the oyster Crassostrea virginica, the sand dollar Dendraster excentricus, and the sea urchin Strongylocentrotus purpuratus) was determined experimentally using chronic-estimator embryo-larval test procedures. The effect of sample dissolved organic matter (DOM) content on Cu bioavailability was determined for these species using commonly prescribed test procedures. Comparisons were made among these test results and test results reported previously for two other invertebrate species: the mussel Mytilus edulis and the copepod Eurytemora affinis. All six species exhibited a direct and significant relationship between the sample dissolved organic carbon (DOC; a surrogate measure of DOM) and either the dissolved Cu median lethal concentration (LC50) values or median effect concentration (EC50) values. This relationship is significant even when the DOM has different quality as evidenced by molecular fluorescence spectroscopy. Once normalized for the effects of DOM, the Cu sensitivity of these species from least to most sensitive were E. affinis < D. excitricus < C. virginica approximately S. purpuratus approximately M. edulis approximately M. galloprovincialis. This ranking of species sensitivity differs from the saltwater species sensitivity distribution proposed in 2003 by the U.S. Environmental Protection Agency. These results support the need to account for factors that modify Cu bioavailability in future saltwater Cu criteria development efforts. More specifically, Cu saltwater species sensitivity distribution data will need to be normalized by factors affecting Cu bioavailability to assure that accurate and protective criteria are subsequently developed for saltwater species and their uses.

???displayArticle.pubmedLink??? 20821449
???displayArticle.link??? Environ Toxicol Chem


Genes referenced: LOC100887844