Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-41250
Plant Physiol 2009 Oct 01;1512:820-9. doi: 10.1104/pp.109.142067.
Show Gene links Show Anatomy links

Extracellular DNA is required for root tip resistance to fungal infection.

Wen F , White GJ , VanEtten HD , Xiong Z , Hawes MC .


???displayArticle.abstract???
Plant defense involves a complex array of biochemical interactions, many of which occur in the extracellular environment. The apical 1- to 2-mm root tip housing apical and root cap meristems is resistant to infection by most pathogens, so growth and gravity sensing often proceed normally even when other sites on the root are invaded. The mechanism of this resistance is unknown but appears to involve a mucilaginous matrix or "slime" composed of proteins, polysaccharides, and detached living cells called "border cells." Here, we report that extracellular DNA (exDNA) is a component of root cap slime and that exDNA degradation during inoculation by a fungal pathogen results in loss of root tip resistance to infection. Most root tips (>95%) escape infection even when immersed in inoculum from the root-rotting pathogen Nectria haematococca. By contrast, 100% of inoculated root tips treated with DNase I developed necrosis. Treatment with BAL31, an exonuclease that digests DNA more slowly than DNase I, also resulted in increased root tip infection, but the onset of infection was delayed. Control root tips or fungal spores treated with nuclease alone exhibited normal morphology and growth. Pea (Pisum sativum) root tips incubated with [(32)P]dCTP during a 1-h period when no cell death occurs yielded root cap slime containing (32)P-labeled exDNA. Our results suggest that exDNA is a previously unrecognized component of plant defense, an observation that is in accordance with the recent discovery that exDNA from white blood cells plays a key role in the vertebrate immune response against microbial pathogens.

???displayArticle.pubmedLink??? 19700564
???displayArticle.pmcLink??? PMC2754639
???displayArticle.link??? Plant Physiol


Genes referenced: etv1 LOC115919910

References [+] :
Allesen-Holm, A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. 2006, Pubmed