Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-41145
Blood Cells Mol Dis 2009 Jan 01;431:43-8. doi: 10.1016/j.bcmd.2009.05.001.
Show Gene links Show Anatomy links

RUNX factors in development: lessons from invertebrate model systems.

Braun T , Woollard A .


???displayArticle.abstract???
Runt-related (RUNX) transcription factors are evolutionarily conserved regulators of cell proliferation, differentiation and stem cell maintenance. They are critical for the correct development and function of a variety of human tissues, including during haematopoiesis. RUNX genes regulate various aspects of proliferation control, stem cell maintenance, lineage commitment and regulation of differentiation; disruptions in the correct function of RUNX genes have been associated with human pathologies, most prominently cancer. Because of the high context dependency and partial redundancy of vertebrate RUNX genes, invertebrate model systems have been studied in the hope of finding an ancestral function. Here we review the progress of these studies in three invertebrate systems, the fruit fly Drosophila melanogaster, the sea urchin Strongylocentrotus purpuratus and the nematode Caenorhabditis elegans. All essential aspects of RUNX function in vertebrates have counterparts in invertebrates, confirming the usefulness of these studies in simpler organisms. The fact that not all RUNX functions are conserved in all systems, though, underscores the importance of choosing the right model to ask specific questions.

???displayArticle.pubmedLink??? 19447650
???displayArticle.link??? Blood Cells Mol Dis
???displayArticle.grants??? [+]

Genes referenced: LOC100887844 LOC115919910