Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-40659
Biofouling 2008 Jan 01;243:209-18. doi: 10.1080/08927010802041253.
Show Gene links Show Anatomy links

The effect of epibionts on the susceptibility of the red seaweed Cryptonemia seminervis to herbivory and fouling.

da Gama BA , Santos RP , Pereira RC .


???displayArticle.abstract???
Epibiosis or fouling on living organisms can have direct and indirect detrimental effects, in particular on photosynthetic organisms such as seaweeds. It thus seems reasonable to hypothesize that macroalgae have been selected for the presence or induction of antifouling (AF) defences. The red seaweed Cryptonemia seminervis is usually found in nature with an elevated cover of epibionts. To assess the effect of epibiosis on the susceptibility of this seaweed to herbivory and fouling, the abundance of fouling was evaluated and compared to herbivore consumption (by amphipods and sea urchins) of fouled (bryozoan and sponge) and non-fouled C. seminervis. Attachment of the mussel Perna perna to surfaces treated with extracts from seaweeds with and without epibionts was also assessed. Epibiosis corresponded to ca. 51% of the blade surface of C. seminervis, sometimes covering as much as 90% and up to 51% of the thallus weight, encompassing mainly the bryozoan Membranipora membranacea and an unidentified sponge. Algae colonized by M. membranacea were preferred compared to algae devoid of epibionts, a ''shared doom'' effect, either by the amphipod Elasmopus brasiliensis or by the urchin Lytechinus variegatus (p < 0.01). Sponge epibiosis also increased consumption by both herbivores (p < 0.001), suggesting that epibionts may act as lures to herbivores, attracting consumers that otherwise would not feed significantly on the seaweed. Foods containing extracts from fouled C. seminervis were preferred by urchins over the alga devoid of epibionts. However, extracts from fouled alga inhibited mussel attachment when compared to epibiont-free alga. Differences might be a direct detrimental effect of the presence of epibionts. On the other hand, epibiosis may induce the production of AF defences in C. seminervis.

???displayArticle.pubmedLink??? 18373291
???displayArticle.link??? Biofouling


Genes referenced: LOC100887844 LOC590297 srpl