Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-39560
Environ Sci Technol 2005 Aug 15;3916:5999-6005. doi: 10.1021/es050546r.
Show Gene links Show Anatomy links

Arsenic occurrence and species in near-shore macroalgae-feeding marine animals.

Kirby J , Maher W , Spooner D .


???displayArticle.abstract???
This study was undertaken to improve the understanding of arsenic species and their pathways of formation in marine animals: fish (Odax cyanomelas), abalone (Haliotis rubra), and sea urchins (Heliocidaris erythrogramma and Centrostephanus rodgersii) that are directly exposed through their diets to dimethyl arsenoriboses in macroalgae (Phyllospora comosa and Halopteris platycena). The identification of dimethyl arsenoriboses (phosphate, sulfonate, and glycerol) in both dominant macroalgae species, and especially digestive tissues of marine animals that consume them, suggests these arsenic species, are to some degree accumulated directly from their diets without degradation or conversion. An unknown arsenic species in H. rubra intestinal tissue was identified using tandem mass spectrometry as 2'',3''-dihydroxypropyl 5-deoxy-5-trimethyl arsonioriboside (trimethyl glycerol arsenoribose). The concentration of trimethyl glycerol arsenoribose in H. rubra intestinal tissue was estimated to account for 28% (5.0 microg g(-1) dry mass) of the methanol-water-soluble arsenic fraction. The presence of a trimethyl glycerol arsenoribose in marine animal tissues may be due to microbial-mediated processes that promote the reduction and methylation of dimethyl arsenoriboses released during the breakdown of macroalgae in their diets. Arsenobetaine formation may then occur in the lumen of the digestive tract (i.e., mediated by microorganisms) or in the liver catalyzed by enzymes. The identification of a large amount of trimethyl glycerol arsenoribose in H. rubra intestinal tissue suggests this species is a main constituent in the pathway for arsenic in this marine animal.

???displayArticle.pubmedLink??? 16173556
???displayArticle.link??? Environ Sci Technol


Genes referenced: LOC100887844 LOC115925415