Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-39079
Mol Plant Microbe Interact 2004 Jul 01;177:798-804. doi: 10.1094/MPMI.2004.17.7.798.
Show Gene links Show Anatomy links

Introduction of plant and fungal genes into pea (Pisum sativum L.) hairy roots reduces their ability to produce pisatin and affects their response to a fungal pathogen.

Wu Q , VanEtten HD .


???displayArticle.abstract???
Pisatin is an isoflavonoid phytoalexin synthesized by pea (Pisum sativum L.). Previous studies have identified two enzymes apparently involved in the synthesis of this phytoalexin, isoflavone reductase (IFR), which catalyzes an intermediate step in pisatin biosynthesis, and (+)6a-hydroxymaackiain 3-O-methyltransferase (HMM), an enzyme catalyzing the terminal step. To further evaluate the involvement of these enzymes in pisatin biosynthesis, sense- and antisense-oriented cDNAs of Ifr and Hmm fused to the 35s CaMV promoter, and Agrobacterium rhizogenes, were used to produce transgenic pea hairy root cultures. PDA, a gene encoding pisatin demethylating activity (pda) in the pea-pathogenic fungus Nectria haematococca, also was used in an attempt to reduce pisatin levels. Although hairy root tissue with either sense or antisense Ifr cDNA produced less pisatin, the greatest reduction occurred with sense or antisense Hmm cDNA. The reduced pisatin production in these lines was associated with reduced amounts of Hmm transcripts, HMM protein, and HMM enzyme activity. Hairy roots containing the PDA gene also produced less pisatin. To evaluate the role of pisatin in disease resistance, the virulence of N. haematococca on the transgenic roots that produced the lowest levels of pisatin was tested. Hairy roots expressing antisense Hmm were more susceptible than the control hairy roots to isolates of N. haematococca that are either virulent or nonvirulent on wild-type pea plants. This appears to be the first case of producing transgenic plant tissue with a reduced ability to produce a phytoalexin and demonstrating that such tissue is less resistant to fungal infection: these results support the hypothesis that phytoalexin production is a disease resistance mechanism.

???displayArticle.pubmedLink??? 15242174
???displayArticle.link??? Mol Plant Microbe Interact


Genes referenced: etv1 hes hes1 LOC100893907 LOC586122 stk36