Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-37969
J Biol Chem 2002 Jan 25;2774:2763-72. doi: 10.1074/jbc.M108839200.
Show Gene links Show Anatomy links

Molecular characterization of the starfish inositol 1,4,5-trisphosphate receptor and its role during oocyte maturation and fertilization.

Iwasaki H , Chiba K , Uchiyama T , Yoshikawa F , Suzuki F , Ikeda M , Furuichi T , Mikoshiba K .


???displayArticle.abstract???
The release of calcium ions (Ca(2+)) from their intracellular stores is essential for the fertilization of oocytes of various species. The calcium pools can be induced to release Ca(2+) via two main types of calcium channel receptor: the inositol 1,4,5-trisphosphate receptor (IP(3)R) and the ryanodine receptor. Starfish oocytes have often been used to study intracellular calcium mobilization during oocyte maturation and fertilization, but how the intracellular calcium channels contribute to intracellular calcium mobilization has never been understood fully, because these molecules have not been identified and no specific inhibitors of these channels have ever been found. In this study, we utilized a novel IP(3)R antagonist, the "IP(3) sponge," to investigate the role of IP(3) during fertilization of the starfish oocyte. The IP(3) sponge strongly and specifically competed with endogenous IP(3)R for binding to IP(3). By injecting IP(3) sponge into starfish oocyte, the increase in intracellular calcium and formation of the fertilization envelope were both dramatically blocked, although oocyte maturation was not blocked. To investigate the role of IP(3)R in the starfish oocyte more precisely, we cloned IP(3)R from the ovary of starfish, and the predicted amino acid sequence indicated that the starfish IP(3)R has 58-68% identity to mammalian IP(3)R types 1, 2, and 3. We then raised antibodies that recognize starfish IP(3)R, and use of the antibodies to perform immunoblot analysis revealed that the level of expression of IP(3)R remained unchanged throughout oocyte maturation. An immunocytochemical study, however, revealed that the distribution of starfish IP(3)R changes during oocyte maturation.

???displayArticle.pubmedLink??? 11687583
???displayArticle.link??? J Biol Chem


Genes referenced: itpr1 LOC115918576 LOC115919080