Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-37371
Eur J Cell Biol 1999 Dec 01;7812:903-10. doi: 10.1016/s0171-9335(99)80092-2.
Show Gene links Show Anatomy links

Caulerpenyne blocks MBP kinase activation controlling mitosis in sea urchin eggs.

Pesando D , Pesci-Bardon C , Huitorel P , Girard JP .


???displayArticle.abstract???
In a previous study, we demonstrated that caulerpenyne (Cyn), a natural sesquiterpene having an antiproliferative potency, blocked the mitotic cycle of sea urchin embryos at metaphase and inhibited the phosphorylation of several proteins, but did not affect histone H1 kinase activation (Pesando et al, 1998, Eur. J. Cell Biol. 77, 19-26). Here, we show that concentrations of Cyn that blocked the first division of the sea urchin Paracentrotus lividus embryos in a metaphase-like stage (45 microM) also inhibited the stimulation of mitogen-activated protein kinase (MAPK) activity in vivo as measured in treated egg extracts using myelin basic protein (MBP) as a substrate (MBPK). However, Cyn had no effect on MBP phosphorylation when added in vitro to an untreated egg extract taken at the time of metaphase, suggesting that Cyn acts on an upstream activation process. PD 98059 (40 microM), a previously characterized specific synthetic inhibitor of MAPK/extracellular signal-regulated kinase-1 (MEK1), also blocked sea urchin eggs at metaphase in a way very similar to Cyn. Both molecules induced similar inhibitory effects on MBP kinase activation in vivo, but had no direct effect on MBP kinase activity in vitro, whereas they did not affect H1 kinase activation neither in vivo nor in vitro. As a comparison, butyrolactone 1 (100 microM), a known inhibitor of H1 kinase activity, did inhibit H1 kinase of sea urchin eggs in vivo and in vitro, and blocked the sea urchin embryo mitotic cycle much before metaphase. Immunoblots of mitotic extracts, treated with anti-active MAP-kinase antibody, showed that both Cyn and PD 98059 reduced the phosphorylation of p42 MAP kinase (Erk2) in vivo. Our overall results suggest that Cyn blocks the sea urchin embryo mitotic cycle at metaphase by inhibiting an upstream phosphorylation event in the MBPK activation pathway. They also show that H1 kinase and MBPK activation can be dissociated from each other in this model system.

???displayArticle.pubmedLink??? 10669109
???displayArticle.link??? Eur J Cell Biol


Genes referenced: LOC100887844 LOC115919910 LOC586799
???displayArticle.antibodies??? phospho-mapk1 Ab4