Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-37307
J Mol Biol 1999 Oct 29;2933:477-91. doi: 10.1006/jmbi.1999.3171.
Show Gene links Show Anatomy links

DNA distortion as a factor in nucleosome positioning.

Fitzgerald DJ , Anderson JN .


???displayArticle.abstract???
In a previous report we constructed a synthetic DNA sequence that directed the deposition of histone octamers to a single site, and it was proposed that DNA distortion was involved in the positioning effect. In the present study we utilized the chemical probe potassium permanganate to identify sites of DNA distortion in the synthetic positioning sequence. A permanganate hypersite was identified 15 bp from the nucleosome pseudo-dyad at a site known to display DNA distortion in the mature nucleosome. The sequence of the site contained a TA step flanked by an oligo-pyrimidine tract. A series of substitutions were made in the region of the permanganate hypersite and the resulting constructs tested for affinity for histone octamers and translational positioning in in vitro studies. The results revealed that either a single base substitution at the TA step or in the adjacent homopolymeric tract dramatically affected affinity and positioning activity. The rotational orientation of the permanganate-sensitive sequence was shown to be important for functions, since altering the orientation of the site in a positioning fragment reduced positioning activity and octamer affinity, while altering the rotational orientation of the sequence in a non-positioning fragment had the opposite effects. A reconstituted 5 S rDNA positioning sequence from Lytechinus variegatus was also shown to display a permanganate hypersite 16 bp from its pseudo-dyad.

???displayArticle.pubmedLink??? 10543944
???displayArticle.link??? J Mol Biol