Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-36603
Mol Reprod Dev 1997 May 01;471:79-86. doi: 10.1002/(SICI)1098-2795(199705)47:1<79::AID-MRD11>3.0.CO;2-V.
Show Gene links Show Anatomy links

Mitochondrial sheath movement and detachment in mammalian, but not nonmammalian, sperm induced by disulfide bond reduction.

Sutovsky P , Tengowski MW , Navara CS , Zoran SS , Schatten G .


???displayArticle.abstract???
The successful completion of the fertilization process requires the properly choreographed unsheathing of the tightly packaged sperm once it has been fully incorporated into the egg''s cytoplasm. The nuclear and accessory structures of mammalian sperm become stabilized by disulfide bonds (S-S) during epididymal maturation. This stabilization is reversed during fertilization by the reduction of S-S cross-linking, but little is known about the effect of S-S reduction on individual disulfide-hardened structures such as the sperm''s connecting piece, fibrous sheath, and mitochondria. Here, we demonstrate the action of the S-S-reducing environment on the mitochondrial sheath of mammalian sperm, visualized by the vital fluorescent probe MitoTracker and by electron microscopy. In both human and bull sperm, mitochondria form a compact helix (mitochondrial sheath) wrapped around the midpiece and connecting piece that can be fluorescently labelled by a short incubation with 100 nM MitoTracker. Exposure of bull sperm to 0.1-10 mM dithiothreitol (DTT; a disulfide bond-reducing agent) induced a time and dose-dependent sliding of the mitochondrial sheath down the axoneme, accompanied by the excision of the sperm tail and decondensation of the sperm nucleus. Increasing the concentration of DTT to 100 mM accelerated mitochondrial movement, causing a completed stripping of sperm mitochondria and partial disassembly of the connecting piece. Likewise, human sperm responded to DTT treatment by the sliding or removal of the mitochondrial sheath and decondensation of the sperm chromatin. These events were not observed in the sperm of lower vertebrates and invertebrates (Xenopus laevis and Lytechinus pictus, respectively) exposed to an excess of DTT. Thus the sensitivity of sperm mitochondria to the S-S reducing environment seems to be an exclusive feature of mammalian sperm. The movement of sperm mitochondria induced by S-S reduction may be an initial critical step in the disassembly of the mammalian sperm tail during fertilization.

???displayArticle.pubmedLink??? 9110318
???displayArticle.link??? Mol Reprod Dev
???displayArticle.grants??? [+]