Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-35879
Xenobiotica 1994 Oct 01;2410:989-1001. doi: 10.3109/00498259409043296.
Show Gene links Show Anatomy links

NADPH-, NADH- and cumene hydroperoxide-dependent metabolism of benzo[a]pyrene by pyloric caeca microsomes of the sea star Asterias rubens L. (Echinodermata: Asteroidea).

den Besten PJ , Lemaire P , Livingstone DR .


???displayArticle.abstract???
1. Benzo[a]pyrene (BaP) metabolism was studied in microsomes of the pyloric caeca (main digestive tissue and site of P450) of the echinoderm sea star (starfish) Asterias rubens. 2. NADPH-dependent metabolism of BaP produced phenols (36% of total metabolism), quinones (19%), dihydrodiols (25%) and putative protein adducts (20%). 3. NADH-dependent rates of BaP metabolism were approximately twice those found for NADPH-dependent metabolism, and metabolite formation was shifted towards dihydrodiols and quinones. 4. Cumene hydroperoxide (CHP)-dependent rates of BaP metabolism were also higher than NADPH-dependent rates by a factor of six for quinone and putative protein adduct production, and by a factor of four for phenol and dihydrodiol production. 5. Microsomal rates of BaP metabolism in BaP-exposed sea stars appeared to be elevated more in the case of NADPH-dependent than for CHP-dependent metabolism (respectively, increases of 130 and 41%), indicating the induction of forms of P450 preferentially catalysing NADPH-dependent metabolism. 6. 1,1,1-Trichloropropene-2,3-oxide (TCPO) inhibited dihydrodiol formation from both NADPH- and CHP-dependent BaP metabolism, indicating the involvement of epoxide hydratase in BaP metabolism. 7. Incubations of pyloric caeca microsomes with BaP and a superoxide anion radical-generating system (xanthine/xanthine oxidase) produced putative protein adducts but no free metabolites.

???displayArticle.pubmedLink??? 7900414
???displayArticle.link??? Xenobiotica


Genes referenced: LOC100887844